Your browser doesn't support javascript.
loading
Top-Down Biasing of Visual Cortical Activity Encodes Attended Information and Facilitates Behavioral Performance in Visual Spatial Attention.
bioRxiv ; 2023 Aug 07.
Article en En | MEDLINE | ID: mdl-37609147
ABSTRACT
Top-down attention plays a vital role in selecting relevant stimuli and suppressing distracting information. During top-down visual-spatial attention, control signals from the dorsal attention network modulate the baseline neuronal activity in the visual cortex in favor of task-relevant stimuli. While several studies have demonstrated that baseline shift during anticipatory attention occurs in multiple visual areas, such effects have not been systematically investigated across the visual hierarchy, especially when different attention conditions are matched for stimulus and task factors. In this fMRI study, we investigated anticipatory attention signals using univariate and multivariate (MVPA) analysis in multiple visual cortical areas. First, the univariate analysis yielded significant activation differences in higher-order visual areas, with the effect weaker in early visual areas. Second, however, in contrast, MVPA decoding was significant in predicting attention conditions in all visual areas and IPS, with lower-order visual areas (e.g., V1) having greater decoding accuracy than higher-order visual areas (e.g., LO1). Third, the strength of decoding accuracy predicted the behavioral performance in the discrimination task. All the results were highly replicable and consistent across two datasets with same experimental paradigms but recorded at two research sites, and two experimental conditions where the direction of spatial attention was driven either by external instructions (cue-instructed attention) or from internal decisions (free-choice attention). Our results provide clear evidence, not available in past univariate investigations, that top-down attentional control signals selectively bias neuronal processing throughout the visual hierarchy, and that this biasing is correlated with the task performance.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article