Your browser doesn't support javascript.
loading
Cluster Head Selection Method for Edge Computing WSN Based on Improved Sparrow Search Algorithm.
Qiu, Shaoming; Zhao, Jiancheng; Zhang, Xuecui; Li, Ao; Wang, Yahui; Chen, Fen.
Afiliación
  • Qiu S; Communication and Network Laboratory, Dalian University, Dalian 116622, China.
  • Zhao J; Communication and Network Laboratory, Dalian University, Dalian 116622, China.
  • Zhang X; North Automatic Control Technology Institute, Taiyuan 030006, China.
  • Li A; Communication and Network Laboratory, Dalian University, Dalian 116622, China.
  • Wang Y; Communication and Network Laboratory, Dalian University, Dalian 116622, China.
  • Chen F; Communication and Network Laboratory, Dalian University, Dalian 116622, China.
Sensors (Basel) ; 23(17)2023 Aug 31.
Article en En | MEDLINE | ID: mdl-37688024
Sensor nodes are widely distributed in the Internet of Things and communicate with each other to form a wireless sensor network (WSN), which plays a vital role in people's productivity and life. However, the energy of WSN nodes is limited, so this paper proposes a two-layer WSN system based on edge computing to solve the problems of high energy consumption and short life cycle of WSN data transmission and establishes wireless energy consumption and distance optimization models for sensor networks. Specifically, we propose the optimization objective of balancing load and distance factors. We adopt an improved sparrow search algorithm to evenly distribute sensor nodes in the system to reduce resource consumption, consumption, and network life. Through the simulation experiment, our method is illustrated, effectively reducing the network's energy consumption by 26.8% and prolonging the network's life cycle.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China