Sustained pigmentation causes DNA damage and invokes translesion polymerase Polκ for repair in melanocytes.
Nucleic Acids Res
; 51(19): 10451-10466, 2023 10 27.
Article
en En
| MEDLINE
| ID: mdl-37697436
Melanin protects skin cells from ultraviolet radiation-induced DNA damage. However, intermediates of eumelanin are highly reactive quinones that are potentially genotoxic. In this study, we systematically investigate the effect of sustained elevation of melanogenesis and map the consequent cellular repair response of melanocytes. Pigmentation increases γH2AX foci, DNA abasic sites, causes replication stress and invokes translesion polymerase Polκ in primary human melanocytes, as well as mouse melanoma cells. Confirming the causal link, CRISPR-based genetic ablation of tyrosinase results in depigmented cells with low Polκ levels. During pigmentation, Polκ activates replication stress response and keeps a check on uncontrolled proliferation of cells harboring melanin-damaged DNA. The mutational landscape observed in human melanoma could in part explain the error-prone bypass of DNA lesions by Polκ, whose absence would lead to genome instability. Thereby, translesion polymerase Polκ is a critical response of pigmenting melanocytes to combat melanin-induced DNA alterations. Our study illuminates the dark side of melanin and identifies (eu)melanogenesis as a key missing link between tanning response and mutagenesis, mediated via the necessary evil translesion polymerase, Polκ.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
ADN Polimerasa Dirigida por ADN
/
Melanocitos
/
Melanoma
Tipo de estudio:
Etiology_studies
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Nucleic Acids Res
Año:
2023
Tipo del documento:
Article
País de afiliación:
India