Your browser doesn't support javascript.
loading
Human voltage-gated Na+ and K+ channel properties underlie sustained fast AP signaling.
Wilbers, René; Metodieva, Verjinia D; Duverdin, Sarah; Heyer, Djai B; Galakhova, Anna A; Mertens, Eline J; Versluis, Tamara D; Baayen, Johannes C; Idema, Sander; Noske, David P; Verburg, Niels; Willemse, Ronald B; de Witt Hamer, Philip C; Kole, Maarten H P; de Kock, Christiaan P J; Mansvelder, Huibert D; Goriounova, Natalia A.
Afiliación
  • Wilbers R; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands.
  • Metodieva VD; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands.
  • Duverdin S; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands.
  • Heyer DB; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands.
  • Galakhova AA; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands.
  • Mertens EJ; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands.
  • Versluis TD; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands.
  • Baayen JC; Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands.
  • Idema S; Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands.
  • Noske DP; Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands.
  • Verburg N; Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands.
  • Willemse RB; Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands.
  • de Witt Hamer PC; Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands.
  • Kole MHP; Department of Axonal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, Netherlands.
  • de Kock CPJ; Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, Netherlands.
  • Mansvelder HD; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands.
  • Goriounova NA; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands.
Sci Adv ; 9(41): eade3300, 2023 10 13.
Article en En | MEDLINE | ID: mdl-37824607
ABSTRACT
Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na+) and potassium (K+) currents in human pyramidal neurons can explain their fast input-output properties. Human Na+ and K+ currents exhibited more depolarized voltage dependence, slower inactivation, and faster recovery from inactivation compared with their mouse counterparts. Computational modeling showed that despite lower Na+ channel densities in human neurons, the biophysical properties of Na+ channels resulted in higher channel availability and contributed to fast AP kinetics stability. Last, human Na+ channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na+ and K+ channels enable fast input-output properties of large human pyramidal neurons.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Piramidales / Neuronas Límite: Animals / Humans Idioma: En Revista: Sci Adv Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Piramidales / Neuronas Límite: Animals / Humans Idioma: En Revista: Sci Adv Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos