Your browser doesn't support javascript.
loading
Effects of phytohormone on Chlorella vulgaris grown in wastewater-flue gas: C/N/S fixation, wastewater treatment and metabolome analysis.
Kong, Wenwen; Shi, Shilin; Peng, Denghui; Feng, Shuo; Xu, Lianfei; Wang, Xin; Shen, Boxiong; Bi, Yonghong; Lyu, Honghong.
Afiliación
  • Kong W; Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China.
  • Shi S; Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China.
  • Peng D; Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China.
  • Feng S; Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China.
  • Xu L; Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China.
  • Wang X; Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China.
  • Shen B; Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China.
  • Bi Y; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China. Electronic address: biyh@ihb.ac.cn.
  • Lyu H; Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China.
Chemosphere ; 345: 140398, 2023 Dec.
Article en En | MEDLINE | ID: mdl-37844705
Chlorella vulgaris (C. vulgaris) can provide the means to fix CO2 from complicated flue gas, treat wastewater and reach a sustainable production of petrochemical substitutes simultaneously. However, a prerequisite to achieving this goal is to promote C. vulgaris growth and improve the CO2-to-fatty acids conversion efficiency under different conditions of flue gas and wastewater. Thus, the addition of indole-3-acetic acid (IAA) in C. vulgaris cultivation was proposed. Results showed that C. vulgaris were more easily inhibited by 100 ppm NO and 200 ppm SO2 under low nitrogen (N) condition. NO and SO2 decreased the carbon (C) fixation; but increased N and sulfur (S) fixation. IAA adjusted the content of superoxide dismutase (SOD) and malondialdehyde (MDA), improved the expression of psbA, rbcL, and accD, attenuated the toxicity of NO and SO2 on C. vulgaris, and ultimately improved cell growth (2014.64-2458.16 mgdw·L-1) and restored CO2 fixation rate (170.98-220.92 mg CO2·L-1·d-1). Moreover, wastewater was found to have a high treatment efficiency because C. vulgaris grew well in all treatments, and the maximal removal rates of both N and phosphorus (P) reached 100%. Metabonomic analysis showed that IAA, "NO and SO2" were involved in the down-regulated and up-regulated expression of multiple metabolites, such as fatty acids, amino acids, and carbohydrates. IAA was beneficial for improving lipid accumulation with 24584.21-27634.23 µg g-1, especially monounsaturated fatty acids (MUFAs) dominated by 16-18 C fatty acids, in C. vulgaris cells. It was concluded that IAA enhanced the CO2 fixation, fatty acids production of C. vulgaris and its nutrients removal rate.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Purificación del Agua / Chlorella vulgaris / Microalgas Idioma: En Revista: Chemosphere Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Purificación del Agua / Chlorella vulgaris / Microalgas Idioma: En Revista: Chemosphere Año: 2023 Tipo del documento: Article