Incorporating Efficacy Data from Initial Trials Into Subsequent Evaluations: Application to Vaccines Against Respiratory Syncytial Virus.
Epidemiology
; 35(2): 130-136, 2024 Mar 01.
Article
en En
| MEDLINE
| ID: mdl-37963353
BACKGROUND: When a randomized controlled trial fails to demonstrate statistically significant efficacy against the primary endpoint, a potentially costly new trial would need to be conducted to receive licensure. Incorporating data from previous trials might allow for more efficient follow-up trials to demonstrate efficacy, speeding the availability of effective vaccines. METHODS: Based on the outcomes from a failed trial of a maternal vaccine against respiratory syncytial virus (RSV), we simulated data for a new Bayesian group-sequential trial. We analyzed the data either ignoring data from the previous trial (i.e., weakly informative prior distributions) or using prior distributions incorporating the historical data into the analysis. We evaluated scenarios where efficacy in the new trial was the same, greater than, or less than that in the original trial. For each scenario, we evaluated the statistical power and type I error rate for estimating the vaccine effect following interim analyses. RESULTS: When we used a stringent threshold to control the type I error rate, analyses incorporating historical data had a small advantage over trials that did not. If control of type I error is less important (e.g., in a postlicensure evaluation), the incorporation of historical data can provide a substantial boost in efficiency. CONCLUSIONS: Due to the need to control the type I error rate in trials used to license a vaccine, incorporating historical data provides little additional benefit in terms of stopping the trial early. However, these statistical approaches could be promising in evaluations that use real-world evidence following licensure.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Virus Sincitiales Respiratorios
/
Vacunas
Límite:
Humans
Idioma:
En
Revista:
Epidemiology
Asunto de la revista:
EPIDEMIOLOGIA
Año:
2024
Tipo del documento:
Article