Your browser doesn't support javascript.
loading
Deep Learning k-Space-to-Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion-Weighted Imaging Breast MRI.
Sauer, Stephanie Tina; Christner, Sara Aniki; Lois, Anna-Maria; Woznicki, Piotr; Curtaz, Carolin; Kunz, Andreas Steven; Weiland, Elisabeth; Benkert, Thomas; Bley, Thorsten Alexander; Baeßler, Bettina; Grunz, Jan-Peter.
Afiliación
  • Sauer ST; Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
  • Christner SA; Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
  • Lois AM; Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
  • Woznicki P; Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
  • Curtaz C; Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany.
  • Kunz AS; Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
  • Weiland E; MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany.
  • Benkert T; MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany.
  • Bley TA; Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
  • Baeßler B; Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
  • Grunz JP; Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
J Magn Reson Imaging ; 2023 Nov 16.
Article en En | MEDLINE | ID: mdl-37974498
BACKGROUND: For time-consuming diffusion-weighted imaging (DWI) of the breast, deep learning-based imaging acceleration appears particularly promising. PURPOSE: To investigate a combined k-space-to-image reconstruction approach for scan time reduction and improved spatial resolution in breast DWI. STUDY TYPE: Retrospective. POPULATION: 133 women (age 49.7 ± 12.1 years) underwent multiparametric breast MRI. FIELD STRENGTH/SEQUENCE: 3.0T/T2 turbo spin echo, T1 3D gradient echo, DWI (800 and 1600 sec/mm2 ). ASSESSMENT: DWI data were retrospectively processed using deep learning-based k-space-to-image reconstruction (DL-DWI) and an additional super-resolution algorithm (SRDL-DWI). In addition to signal-to-noise ratio and apparent diffusion coefficient (ADC) comparisons among standard, DL- and SRDL-DWI, a range of quantitative similarity (e.g., structural similarity index [SSIM]) and error metrics (e.g., normalized root mean square error [NRMSE], symmetric mean absolute percent error [SMAPE], log accuracy error [LOGAC]) was calculated to analyze structural variations. Subjective image evaluation was performed independently by three radiologists on a seven-point rating scale. STATISTICAL TESTS: Friedman's rank-based analysis of variance with Bonferroni-corrected pairwise post-hoc tests. P < 0.05 was considered significant. RESULTS: Both DL- and SRDL-DWI allowed for a 39% reduction in simulated scan time over standard DWI (5 vs. 3 minutes). The highest image quality ratings were assigned to SRDL-DWI with good interreader agreement (ICC 0.834; 95% confidence interval 0.818-0.848). Irrespective of b-value, both standard and DL-DWI produced superior SNR compared to SRDL-DWI. ADC values were slightly higher in SRDL-DWI (+0.5%) and DL-DWI (+3.4%) than in standard DWI. Structural similarity was excellent between DL-/SRDL-DWI and standard DWI for either b value (SSIM ≥ 0.86). Calculation of error metrics (NRMSE ≤ 0.05, SMAPE ≤ 0.02, and LOGAC ≤ 0.04) supported the assumption of low voxel-wise error. DATA CONCLUSION: Deep learning-based k-space-to-image reconstruction reduces simulated scan time of breast DWI by 39% without influencing structural similarity. Additionally, super-resolution interpolation allows for substantial improvement of subjective image quality. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 1.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Magn Reson Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Magn Reson Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2023 Tipo del documento: Article País de afiliación: Alemania