Your browser doesn't support javascript.
loading
CDK4/6 signaling attenuates the effect of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer.
Hara, Naofumi; Ichihara, Eiki; Kano, Hirohisa; Ando, Chihiro; Morita, Ayako; Nishi, Tatsuya; Okawa, Sachi; Nakasuka, Takamasa; Hirabae, Atsuko; Abe, Masaya; Asada, Noboru; Ninomiya, Kiichiro; Makimoto, Go; Fujii, Masanori; Kubo, Toshio; Ohashi, Kadoaki; Hotta, Katsuyuki; Tabata, Masahiro; Maeda, Yoshinobu; Kiura, Katsuyuki.
Afiliación
  • Hara N; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
  • Ichihara E; Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
  • Kano H; Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital, Okayama, Japan.
  • Ando C; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
  • Morita A; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
  • Nishi T; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
  • Okawa S; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
  • Nakasuka T; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
  • Hirabae A; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
  • Abe M; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
  • Asada N; Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan.
  • Ninomiya K; Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan.
  • Makimoto G; Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan.
  • Fujii M; Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
  • Kubo T; Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
  • Ohashi K; Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
  • Hotta K; Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan.
  • Tabata M; Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan.
  • Maeda Y; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
  • Kiura K; Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
Transl Lung Cancer Res ; 12(10): 2098-2112, 2023 Oct 31.
Article en En | MEDLINE | ID: mdl-38025818
Background: Epidermal growth factor receptor (EGFR) mutations, such as exon 19 deletion and exon 21 L858R, are driver oncogenes of non-small cell lung cancer (NSCLC), with EGFR tyrosine kinase inhibitors (TKIs) being effective against EGFR-mutant NSCLC. However, the efficacy of EGFR-TKIs is transient and eventually leads to acquired resistance. Herein, we focused on the significance of cell cycle factors as a mechanism to attenuate the effect of EGFR-TKIs in EGFR-mutant NSCLC before the emergence of acquired resistance. Methods: Using several EGFR-mutant cell lines, we investigated the significance of cell cycle factors to attenuate the effect of EGFR-TKIs in EGFR-mutant NSCLC. Results: In several EGFR-mutant cell lines, certain cancer cells continued to proliferate without EGFR signaling, and the cell cycle regulator retinoblastoma protein (RB) was not completely dephosphorylated. Further inhibition of phosphorylated RB with cyclin-dependent kinase (CDK) 4/6 inhibitors, combined with the EGFR-TKI osimertinib, enhanced G0/G1 cell cycle accumulation and growth inhibition of the EGFR-mutant NSCLC in both in vitro and in vivo models. Furthermore, residual RB phosphorylation without EGFR signaling was maintained by extracellular signal-regulated kinase (ERK) signaling, and the ERK inhibition pathway showed further RB dephosphorylation. Conclusions: Our study demonstrated that the CDK4/6-RB signal axis, maintained by the MAPK pathway, attenuates the efficacy of EGFR-TKIs in EGFR-mutant NSCLC, and targeting CDK4/6 enhances this efficacy. Thus, combining CDK4/6 inhibitors and EGFR-TKI could be a novel treatment strategy for TKI-naïve EGFR-mutant NSCLC.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Transl Lung Cancer Res Año: 2023 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Transl Lung Cancer Res Año: 2023 Tipo del documento: Article País de afiliación: Japón