Primary processes in photophysics and photochemistry of a potential light-activated anti-cancer dirhodium complex.
Photochem Photobiol Sci
; 23(1): 153-162, 2024 Jan.
Article
en En
| MEDLINE
| ID: mdl-38066379
Photophysics and photochemistry of a potential light-activated cytotoxic dirhodium complex [Rh2(µ-O2CCH3)2(bpy)(dppz)](O2CCH3)2, where bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine (Complex 1 or Rh2) in aqueous solutions was studied by means of stationary photolysis and time-resolved methods in time range from hundreds of femtoseconds to microseconds. According to the literature, Complex 1 demonstrates both oxygen-dependent (due to singlet oxygen formation) and oxygen-independent cytotoxicity. Photoexchange of an acetate ligand to a water molecule was the only observed photochemical reaction, which rate was increased by oxygen removal from solutions. Photoexcitation of Complex 1 results in the formation of the lowest triplet electronic excited state, which lifetime is less than 10 ns. This time is too short for diffusion-controlled quenching of the triplet state by dissolved oxygen resulting in 1O2 formation. We proposed that singlet oxygen is produced by photoexcitation of weakly bound van der Waals complexes [Rh2
O2], which are formed in solutions. If this is true, no oxygen-independent light-induced cytotoxicity of Complex 1 exists. Residual cytotoxicity deaerated solutions are caused by the remaining [Rh2
O2] complexes.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Oxígeno Singlete
/
Antineoplásicos
Idioma:
En
Revista:
Photochem Photobiol Sci
Asunto de la revista:
BIOLOGIA
/
QUIMICA
Año:
2024
Tipo del documento:
Article