Your browser doesn't support javascript.
loading
Tunable Crystallinity and Electron Conduction in Wavy 2D Conjugated Metal-Organic Frameworks via Halogen Substitution.
Jastrzembski, Kamil; Zhang, Yingying; Lu, Yang; Sporrer, Lukas; Pohl, Darius; Rellinghaus, Bernd; Waentig, Albrecht L; Zhang, Haojie; Mücke, David; Fu, Shuai; Polozij, Miroslav; Li, Xue; Zhang, Jianjun; Wang, Mingchao; Morag, Ahiud; Yu, Minghao; Mateo-Alonso, Aurelio; Wang, Hai I; Bonn, Mischa; Kaiser, Ute; Heine, Thomas; Dong, Renhao; Feng, Xinliang.
Afiliación
  • Jastrzembski K; Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Zhang Y; Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Lu Y; Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Sporrer L; Max Planck Institute for Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany.
  • Pohl D; Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Rellinghaus B; Dresden Center for Nanoanalysis (DCN), Technische Universität Dresden, Helmholtzstraße18, 01069, Dresden, Germany.
  • Waentig AL; Dresden Center for Nanoanalysis (DCN), Technische Universität Dresden, Helmholtzstraße18, 01069, Dresden, Germany.
  • Zhang H; Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Mücke D; Max Planck Institute for Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany.
  • Fu S; Central Facility of Materials Science Electron Microscopy, Universität Ulm, Albert-Einstein-, Allee 11, 89081, Ulm, Germany.
  • Polozij M; Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Li X; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Zhang J; Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Wang M; Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig Research, Branch, Bautzner Landstraße 400, 01328, Dresden, Germany.
  • Morag A; Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 27 Shandanan Road, Jinan, 250100, China.
  • Yu M; Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Mateo-Alonso A; Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Wang HI; Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Bonn M; Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Kaiser U; POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, Donostia-San Sebastian E-, 20018, Spain.
  • Heine T; Basque Foundation for Science, Bilbao, 48011, Spain.
  • Dong R; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Feng X; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
Small ; : e2306732, 2023 Dec 11.
Article en En | MEDLINE | ID: mdl-38073322
Currently, most reported 2D conjugated metal-organic frameworks (2D c-MOFs) are based on planar polycyclic aromatic hydrocarbons (PAHs) with symmetrical functional groups, limiting the possibility of introducing additional substituents to fine-tune the crystallinity and electrical properties. Herein, a novel class of wavy 2D c-MOFs with highly substituted, core-twisted hexahydroxy-hexa-cata-benzocoronenes (HH-cHBCs) as ligands is reported. By tailoring the substitution of the c-HBC ligands with electron-withdrawing groups (EWGs), such as fluorine, chlorine, and bromine, it is demonstrated that the crystallinity and electrical conductivity at the molecular level can be tuned. The theoretical calculations demonstrate that F-substitution leads to a more reversible coordination bonding between HH-cHBCs and copper metal center, due to smaller atomic size and stronger electron-withdrawing effect. As a result, the achieved F-substituted 2D c-MOF exhibits superior crystallinity, comprising ribbon-like single crystals up to tens of micrometers in length. Moreover, the F-substituted 2D c-MOF displays higher electrical conductivity (two orders of magnitude) and higher charge carrier mobility (almost three times) than the Cl-substituted one. This work provides a new molecular design strategy for the development of wavy 2D c-MOFs and opens a new route for tailoring the coordination reversibility by ligand substitution toward increased crystallinity and superior electric conductivity.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: Alemania