Your browser doesn't support javascript.
loading
Coracle-a machine learning framework to identify bacteria associated with continuous variables.
Staab, Sebastian; Cardénas, Anny; Peixoto, Raquel S; Schreiber, Falk; Voolstra, Christian R.
Afiliación
  • Staab S; Department of Biology, University of Konstanz, Konstanz 78457, Germany.
  • Cardénas A; Department of Biology, University of Konstanz, Konstanz 78457, Germany.
  • Peixoto RS; Department of Biology, American University, Washington, DC, 20016, USA.
  • Schreiber F; Computational Biology Research Center (CBRC) and Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
  • Voolstra CR; Department of Computer and Information Science, University of Konstanz, Konstanz 78457, Germany.
Bioinformatics ; 40(1)2024 01 02.
Article en En | MEDLINE | ID: mdl-38123508
ABSTRACT

SUMMARY:

We present Coracle, an artificial intelligence (AI) framework that can identify associations between bacterial communities and continuous variables. Coracle uses an ensemble approach of prominent feature selection methods and machine learning (ML) models to identify features, i.e. bacteria, associated with a continuous variable, e.g. host thermal tolerance. The results are aggregated into a score that incorporates the performances of the different ML models and the respective feature importance, while also considering the robustness of feature selection. Additionally, regression coefficients provide first insights into the direction of the association. We show the utility of Coracle by analyzing associations between bacterial composition data (i.e. 16S rRNA Amplicon Sequence Variants, ASVs) and coral thermal tolerance (i.e. standardized short-term heat stress-derived diagnostics). This analysis identified high-scoring bacterial taxa that were previously found associated with coral thermal tolerance. Coracle scales with feature number and performs well with hundreds to thousands of features, corresponding to the typical size of current datasets. Coracle performs best if run at a higher taxonomic level first (e.g. order or family) to identify groups of interest that can subsequently be run at the ASV level. AVAILABILITY AND IMPLEMENTATION Coracle can be accessed via a dedicated web server that allows free and simple access http//www.micportal.org/coracle/index. The underlying code is open-source and available via GitHub https//github.com/SebastianStaab/coracle.git.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Aprendizaje Automático Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Aprendizaje Automático Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Alemania