Your browser doesn't support javascript.
loading
Effects of Inclined Interface Angle on Compressible Rayleigh-Taylor Instability: A Numerical Study Based on the Discrete Boltzmann Method.
Chen, Bailing; Lai, Huilin; Lin, Chuandong; Li, Demei.
Afiliación
  • Chen B; School of Mathematics and Statistics, Key Laboratory of Analytical Mathematics and Applications (Ministry of Education), Fujian Key Laboratory of Analytical Mathematics and Applications (FJKLAMA), Center for Applied Mathematics of Fujian Province (FJNU), Fujian Normal University, Fuzhou 350117, Chin
  • Lai H; School of Mathematics and Statistics, Key Laboratory of Analytical Mathematics and Applications (Ministry of Education), Fujian Key Laboratory of Analytical Mathematics and Applications (FJKLAMA), Center for Applied Mathematics of Fujian Province (FJNU), Fujian Normal University, Fuzhou 350117, Chin
  • Lin C; Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
  • Li D; School of Mathematics and Statistics, Key Laboratory of Analytical Mathematics and Applications (Ministry of Education), Fujian Key Laboratory of Analytical Mathematics and Applications (FJKLAMA), Center for Applied Mathematics of Fujian Province (FJNU), Fujian Normal University, Fuzhou 350117, Chin
Entropy (Basel) ; 25(12)2023 Dec 05.
Article en En | MEDLINE | ID: mdl-38136503
ABSTRACT
Rayleigh-Taylor (RT) instability is a basic fluid interface instability that widely exists in nature and in the engineering field. To investigate the impact of the initial inclined interface on compressible RT instability, the two-component discrete Boltzmann method is employed. Both the thermodynamic non-equilibrium (TNE) and hydrodynamic non-equilibrium (HNE) effects are studied. It can be found that the global average density gradient in the horizontal direction, the non-organized energy fluxes, the global average non-equilibrium intensity and the proportion of the non-equilibrium region first increase and then reduce with time. However, the global average density gradient in the vertical direction and the non-organized moment fluxes first descend, then rise, and finally descend. Furthermore, the global average density gradient, the typical TNE intensity and the proportion of non-equilibrium region increase with increasing angle of the initial inclined interface. Physically, there are three competitive mechanisms (1) As the perturbed interface elongates, the contact area between the two fluids expands, which results in an increasing gradient of macroscopic physical quantities and leads to a strengthening of the TNE effects. (2) Under the influence of viscosity, the perturbation pressure waves on both sides of the material interface decrease with time, which makes the gradient of the macroscopic physical quantity decrease, resulting in a weakening of the TNE strength. (3) Due to dissipation and/or mutual penetration of the two fluids, the gradient of macroscopic physical quantities gradually diminishes, resulting in a decrease in the intensity of the TNE.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Entropy (Basel) Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Entropy (Basel) Año: 2023 Tipo del documento: Article