Your browser doesn't support javascript.
loading
Interlayer Phonon Coupling from Heavy and Light Sublayers in a Natural Van der Waals Superlattice.
Bai, Wei; Hua, Yang; Nan, Pengfei; Dai, Shengnan; Sun, Liang; Huang, Xinlong; Yang, Jiong; Ge, Binghui; Xiao, Chong; Xie, Yi.
Afiliación
  • Bai W; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei, Anhui 230026, P. R. China.
  • Hua Y; Institute of Energy, Hefei Comprehensive National Science Center Hefei, Anhui 230031, P. R. China.
  • Nan P; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei, Anhui 230026, P. R. China.
  • Dai S; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University Hefei, Anhui 230601, P. R. China.
  • Sun L; Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China.
  • Huang X; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei, Anhui 230026, P. R. China.
  • Yang J; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei, Anhui 230026, P. R. China.
  • Ge B; Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China.
  • Xiao C; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University Hefei, Anhui 230601, P. R. China.
  • Xie Y; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei, Anhui 230026, P. R. China.
J Am Chem Soc ; 146(1): 892-900, 2024 Jan 10.
Article en En | MEDLINE | ID: mdl-38151507
ABSTRACT
Layered compounds characterized by van der Waals gaps are often associated with relatively weak interlayer particle interactions. However, in specific scenarios, these seemingly feeble forces can exert an impact on interlayer interactions through subtle energy fluctuations, which can give rise to a diverse range of physical and chemical properties, particularly intriguing in the context of thermal transport. In this study, taking a natural superlattice composed of alternately stacked PbS and SnS2 sublayers as a model, we proposed that in a superlattice, there is strong hybridization between acoustic phonons of heavy sublayers and optical phonons of light sublayers. We identified newly generated vibration modes in the superlattice, such as interlayer shear and breathing, which exhibit lower sound velocity and contribute less to heat transport compared to their parent materials, which significantly alters the thermal behaviors of the superlattice compared to its bulk counterparts. Our findings on the behavior of interlayer phonons in superlattices not only can shed light on developing functional materials with enhanced thermal dissipation capabilities but also contribute to the broader field of condensed matter physics, offering insights into various fields, including thermoelectrics and phononic devices, and may pave the way for technological advancements in these areas.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article