Your browser doesn't support javascript.
loading
Ionic Hyperbranched Poly(amido-amine)-Incorporated Nanofiltration Membranes for High-Efficiency Dye Desalination.
Qiu, Ze-Lin; Yu, Wen-Han; Yang, Wu-Shang; Sun, Tong; Zhao, Zi-Hao; Su, Qian-Wei; Zhu, Bao-Ku.
Afiliación
  • Qiu ZL; Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
  • Yu WH; Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
  • Yang WS; Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
  • Sun T; Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
  • Zhao ZH; Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
  • Su QW; Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
  • Zhu BK; Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Langmuir ; 40(1): 915-926, 2024 Jan 09.
Article en En | MEDLINE | ID: mdl-38154048
ABSTRACT
High-efficiency dye desalination is crucial in the textile industry, considering its importance for human health, safe aquatic ecological systems, and resource recovery. In order to solve the problem of effective separation of univalent salt and ionic dye under the condition of high salt, ionic hyperbranched poly(amido-amine) (HBPs) were synthesized based on a simple and scalable one-step polycondensation method and then incorporated into the polyamide (PA) selective layers to construct charged nanochannels through interfacial polymerization (IP) on the surface of a polyvinyl chloride ultrafiltration (PVC-UF) hollow fiber membrane. Both the internal nanopores of HBPs (internal nanochannels) and the interfacial voids between HBPs and the PA matrix (external nanochannels) can be regarded as a fast water molecule transport pathway, while the terminal ionic groups of ionic HBPs endow the nanochannels with charge characteristics for improving ionic dye/salt selectivities. The permeate fluxes and dye/salt selectivities of HBP-TAC/PIP (57.3 L m-2 h-1 and rhodamine B (RB)/NaCl selectivity of 224.0) and HBP-PS/PIP (63.7 L m-2 h-1 and lemon yellow (LY)/NaCl selectivity of 664.0) membranes under 0.4 MPa operation pressure are much higher than PIP-only and HBP-NH2/PIP membranes. At the same time, this project also studied the membrane desalination process in a simulated high-salinity dye/salt mixture system to provide a theoretical basis and technical support for the actual dye desalination process.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China