Your browser doesn't support javascript.
loading
Multi-energy CT material decomposition using graph model improved CNN.
Shi, Zaifeng; Kong, Fanning; Cheng, Ming; Cao, Huaisheng; Ouyang, Shunxin; Cao, Qingjie.
Afiliación
  • Shi Z; School of Microelectronics, Tianjin University, Tianjin, 300072, China. shizaifeng@tju.edu.cn.
  • Kong F; Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin, China. shizaifeng@tju.edu.cn.
  • Cheng M; School of Microelectronics, Tianjin University, Tianjin, 300072, China.
  • Cao H; School of Microelectronics, Tianjin University, Tianjin, 300072, China.
  • Ouyang S; School of Microelectronics, Tianjin University, Tianjin, 300072, China.
  • Cao Q; School of Microelectronics, Tianjin University, Tianjin, 300072, China.
Med Biol Eng Comput ; 62(4): 1213-1228, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38159238
ABSTRACT
In spectral CT imaging, the coefficient image of the basis material obtained by the material decomposition technique can estimate the tissue composition, and its accuracy directly affects the disease diagnosis. Although the precision of material decomposition is increased by employing convolutional neural networks (CNN), extracting the non-local features from the CT image is restricted using the traditional CNN convolution operator. A graph model built by multi-scale non-local self-similar patterns is introduced into multi-material decomposition (MMD). We proposed a novel MMD method based on graph edge-conditioned convolution U-net (GECCU-net) to enhance material image quality. The GECCU-net focuses on developing a multi-scale encoder. At the network coding stage, three paths are applied to capture comprehensive image features. The local and non-local feature aggregation (LNFA) blocks are designed to integrate the local and non-local features from different paths. The graph edge-conditioned convolution based on non-Euclidean space excavates the non-local features. A hybrid loss function is defined to accommodate multi-scale input images and avoid over-smoothing of results. The proposed network is compared quantitatively with base CNN models on the simulated and real datasets. The material images generated by GECCU-net have less noise and artifacts while retaining more information on tissue. The Structural SIMilarity (SSIM) of the obtained abdomen and chest water maps reaches 0.9976 and 0.9990, respectively, and the RMSE reduces to 0.1218 and 0.4903 g/cm3. The proposed method can improve MMD performance and has potential applications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Tomografía Computarizada por Rayos X Idioma: En Revista: Med Biol Eng Comput Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Tomografía Computarizada por Rayos X Idioma: En Revista: Med Biol Eng Comput Año: 2024 Tipo del documento: Article País de afiliación: China