Your browser doesn't support javascript.
loading
A continuum model for magnetic particle flows in microfluidics applicable from dilute to packed suspensions.
Dumas, Simon; Descroix, Stéphanie.
Afiliación
  • Dumas S; Institut Curie, Laboratoire PhysicoChimie (CNRS UMR 168), Institut Pierre-Gilles de Gennes, Sorbonne Université, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France. simon.dumas@curie.fr.
  • Descroix S; Institut Curie, Laboratoire PhysicoChimie (CNRS UMR 168), Institut Pierre-Gilles de Gennes, Sorbonne Université, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France. simon.dumas@curie.fr.
Lab Chip ; 24(3): 584-593, 2024 Jan 30.
Article en En | MEDLINE | ID: mdl-38175160
ABSTRACT
The manipulation of magnetic microparticles has always been pivotal in the development of microfluidic devices, as it encompasses a broad range of applications, such as drug delivery, bioanalysis, on-chip diagnostics, and more recently organ-on-chip development. However, predicting the behavior and trajectory of these particles remains a recurring and partly unresolved question. Magnetic particle-laden flows can display intricate collective behaviors, such as packed plugs, column-shaped aggregates, or fluidization, which are difficult to predict. In this study, we introduce a finite-element model to simulate highly dense flows of magnetic microparticles. Our method relies on an interpenetrating continuum approach, where both the liquid and particle phases are described by the Navier-Stokes equations, in which the magnetic force, interphase friction, and interparticle forces were included. We demonstrate its applicability across the entire range of particle packing densities and compare the results with experimental data from real microfluidic application cases. The model successfully replicates complex behaviors, such as particle aggregation, plug formation and fluidization. This approach has potential to accelerate microfluidic device development by reducing the need for costly and time-consuming experimental optimization.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Francia