Your browser doesn't support javascript.
loading
Development of prediction models to identify hotspots of schistosomiasis in endemic regions to guide mass drug administration.
Singer, Benjamin J; Coulibaly, Jean T; Park, Hailey J; Andrews, Jason R; Bogoch, Isaac I; Lo, Nathan C.
Afiliación
  • Singer BJ; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94304.
  • Coulibaly JT; Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.
  • Park HJ; Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.
  • Andrews JR; Swiss Tropical and Public Health Institute, Basel, Allschwil 4123 Switzerland.
  • Bogoch II; University of Basel, Basel 4001, Switzerland.
  • Lo NC; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94304.
Proc Natl Acad Sci U S A ; 121(2): e2315463120, 2024 Jan 09.
Article en En | MEDLINE | ID: mdl-38181058
ABSTRACT
Schistosomiasis is a neglected tropical disease affecting over 150 million people. Hotspots of Schistosoma transmission-communities where infection prevalence does not decline adequately with mass drug administration-present a key challenge in eliminating schistosomiasis. Current approaches to identify hotspots require evaluation 2-5 y after a baseline survey and subsequent mass drug administration. Here, we develop statistical models to predict hotspots at baseline prior to treatment comparing three common hotspot definitions, using epidemiologic, survey-based, and remote sensing data. In a reanalysis of randomized trials in 589 communities in five endemic countries, a regression model predicts whether Schistosoma mansoni infection prevalence will exceed the WHO threshold of 10% in year 5 ("prevalence hotspot") with 86% sensitivity, 74% specificity, and 93% negative predictive value (NPV; assuming 30% hotspot prevalence), and a regression model for Schistosoma haematobium achieves 90% sensitivity, 90% specificity, and 96% NPV. A random forest model predicts whether S. mansoni moderate and heavy infection prevalence will exceed a public health goal of 1% in year 5 ("intensity hotspot") with 92% sensitivity, 79% specificity, and 96% NPV, and a boosted trees model for S. haematobium achieves 77% sensitivity, 95% specificity, and 91% NPV. Baseline prevalence is a top predictor in all models. Prediction is less accurate in countries not represented in training data and for a third hotspot definition based on relative prevalence reduction over time ("persistent hotspot"). These models may be a tool to prioritize high-risk communities for more frequent surveillance or intervention against schistosomiasis, but prediction of hotspots remains a challenge.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Esquistosomiasis / Esquistosomiasis mansoni Tipo de estudio: Clinical_trials / Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Esquistosomiasis / Esquistosomiasis mansoni Tipo de estudio: Clinical_trials / Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2024 Tipo del documento: Article