Your browser doesn't support javascript.
loading
Performance of Classification Models of Toxins Based on Raman Spectroscopy Using Machine Learning Algorithms.
Zhang, Pengjie; Liu, Bing; Mu, Xihui; Xu, Jiwei; Du, Bin; Wang, Jiang; Liu, Zhiwei; Tong, Zhaoyang.
Afiliación
  • Zhang P; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
  • Liu B; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
  • Mu X; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
  • Xu J; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
  • Du B; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
  • Wang J; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
  • Liu Z; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
  • Tong Z; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
Molecules ; 29(1)2023 Dec 29.
Article en En | MEDLINE | ID: mdl-38202780
ABSTRACT
Rapid and accurate detection of protein toxins is crucial for public health. The Raman spectra of several protein toxins, such as abrin, ricin, staphylococcal enterotoxin B (SEB), and bungarotoxin (BGT), have been studied. Multivariate scattering correction (MSC), Savitzky-Golay smoothing (SG), and wavelet transform methods (WT) were applied to preprocess Raman spectra. A principal component analysis (PCA) was used to extract spectral features, and the PCA score plots clustered four toxins with two other proteins. The k-means clustering results show that the spectra processed with MSC and MSC-SG methods have the best classification performance. Then, the two data types were classified using partial least squares discriminant analysis (PLS-DA) with an accuracy of 100%. The prediction results of the PCA and PLS-DA and the partial least squares regression model (PLSR) perform well for the fingerprint region spectra. The PLSR model demonstrates excellent classification and regression ability (accuracy = 100%, Rcv = 0.776). Four toxins were correctly classified with interference from two proteins. Classification models based on spectral feature extraction were established. This strategy shows excellent potential in toxin detection and public health protection. These models provide alternative paths for the development of rapid detection devices.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Espectrometría Raman / Algoritmos Tipo de estudio: Prognostic_studies Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Espectrometría Raman / Algoritmos Tipo de estudio: Prognostic_studies Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: China