Your browser doesn't support javascript.
loading
Response of sulfide autotrophic denitrification process and microbial community to oxytetracycline stress.
Yue, Qiong; Tang, Chenxin; Li, Xiaofan; Lv, Wei; Liu, Hong; Yue, Hanpeng; Chen, Yongzhi.
Afiliación
  • Yue Q; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
  • Tang C; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
  • Li X; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
  • Lv W; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
  • Liu H; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
  • Yue H; Gansu Qilianshan Pharmaceutical Co., Ltd, China.
  • Chen Y; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China. Electronic address: 476411589@qq.com.
Chemosphere ; 351: 141192, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38218239
ABSTRACT
The coexistence of antibiotics with sulfide and nitrate is common in sewage. Thus, this study explored the removal performance of nitrate and sulfide, and the response of extracellular polymer substances (EPS) and the microbial community to the sulfide autotrophic denitrification (SAD) process under oxytetracycline (OTC) stress. In Phase Ⅰ, the SAD system showed favouranle performance (nitrate removal rate > 92.57%, sulfide removal rate > 97.75%). However, in Phase Ⅳ, at OTC concentrations of 10, 15, and 20 mg/L, the NRE decreased to 76.13%, 40.71%, 11.37%, respectively, and the SRE decreased to 97.58%, 97.09%, 92.84%, respectively. At OTC concentrations of 0, 10, 15, and 20 mg/L, the EPS content were 1.62, 1.75, 2.03, and 1.42 mg/gVSS, respectively. The results showed that SAD performance gradually deteriorated under OTC stress. In particular, when the OTC concentration was 20 mg/L, the EPS content was lower than that of the control test, which could be attributed to the occurrence of microbial death. Finally, high-throughput sequencing results showed that OTC exposure led to gradual domination by heterotrophic denitrifying bacteria.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxitetraciclina / Microbiota Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxitetraciclina / Microbiota Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: China