Your browser doesn't support javascript.
loading
Predicting Safe Liver Resection Volume for Major Hepatectomy Using Artificial Intelligence.
Kang, Chol Min; Ku, Hyung June; Moon, Hyung Hwan; Kim, Seong-Eun; Jo, Ji Hoon; Choi, Young Il; Shin, Dong Hoon.
Afiliación
  • Kang CM; Department of Applied Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21287, USA.
  • Ku HJ; Chang Kee-Ryo Memorial Liver Institute, Kosin University College of Medicine, Busan 49267, Republic of Korea.
  • Moon HH; Chang Kee-Ryo Memorial Liver Institute, Kosin University College of Medicine, Busan 49267, Republic of Korea.
  • Kim SE; Division of Hepatobiliary-Pancreas and Transplantation, Department of Surgery, Kosin University Gospel Hospital, Busan 49267, Republic of Korea.
  • Jo JH; Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
  • Choi YI; Chang Kee-Ryo Memorial Liver Institute, Kosin University College of Medicine, Busan 49267, Republic of Korea.
  • Shin DH; Division of Hepatobiliary-Pancreas and Transplantation, Department of Surgery, Kosin University Gospel Hospital, Busan 49267, Republic of Korea.
J Clin Med ; 13(2)2024 Jan 10.
Article en En | MEDLINE | ID: mdl-38256518
ABSTRACT
(1)

Background:

Advancements in the field of liver surgery have led to a critical need for precise estimations of preoperative liver function to prevent post-hepatectomy liver failure (PHLF), a significant cause of morbidity and mortality. This study introduces a novel application of artificial intelligence (AI) in determining safe resection volumes according to a patient's liver function in major hepatectomies. (2)

Methods:

We incorporated a deep learning approach, incorporating a unique liver-specific loss function, to analyze patient characteristics, laboratory data, and liver volumetry from computed tomography scans of 52 patients. Our approach was evaluated against existing machine and deep learning techniques. (3)

Results:

Our approach achieved 68.8% accuracy in predicting safe resection volumes, demonstrating superior performance over traditional models. Furthermore, it significantly reduced the mean absolute error in under-predicted volumes to 23.72, indicating a more precise estimation of safe resection limits. These findings highlight the potential of integrating AI into surgical planning for liver resections. (4)

Conclusion:

By providing more accurate predictions of safe resection volumes, our method aims to minimize the risk of PHLF, thereby improving clinical outcomes for patients undergoing hepatectomy.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Clin Med Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Clin Med Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos