Your browser doesn't support javascript.
loading
Modelling the probability of meeting IUCN Red List criteria to support reassessments.
Henry, Etienne G; Santini, Luca; Butchart, Stuart H M; González-Suárez, Manuela; Lucas, Pablo M; Benítez-López, Ana; Mancini, Giordano; Jung, Martin; Cardoso, Pedro; Zizka, Alexander; Meyer, Carsten; Akçakaya, H Resit; Berryman, Alex J; Cazalis, Victor; Di Marco, Moreno.
Afiliación
  • Henry EG; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
  • Santini L; École Normale Supérieure, Paris, France.
  • Butchart SHM; Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
  • González-Suárez M; BirdLife International, Cambridge, UK.
  • Lucas PM; Department of Zoology, University of Cambridge, Cambridge, UK.
  • Benítez-López A; Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK.
  • Mancini G; Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
  • Jung M; Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain.
  • Cardoso P; Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.
  • Zizka A; Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
  • Meyer C; Biodiversity, Ecology and Conservation Group, Biodiversity and Natural Resources Management Programme, International Institute for Applied Systems Analysis, Laxenburg, Austria.
  • Akçakaya HR; Faculty of Sciences, CE3C - Centre for Ecology, Evolution and Environmental Sciences, CHANGE - Institute for Global Change and Sustainability, University of Lisbon, Lisbon, Portugal.
  • Berryman AJ; Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland.
  • Cazalis V; Department of Biology, Philipps-University Marburg, Marburg, Germany.
  • Di Marco M; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
Glob Chang Biol ; 30(1): e17119, 2024 Jan.
Article en En | MEDLINE | ID: mdl-38273572
ABSTRACT
Comparative extinction risk analysis-which predicts species extinction risk from correlation with traits or geographical characteristics-has gained research attention as a promising tool to support extinction risk assessment in the IUCN Red List of Threatened Species. However, its uptake has been very limited so far, possibly because existing models only predict a species' Red List category, without indicating which Red List criteria may be triggered. This prevents such approaches to be integrated into Red List assessments. We overcome this implementation gap by developing models that predict the probability of species meeting individual Red List criteria. Using data on the world's birds, we evaluated the predictive performance of our criterion-specific models and compared it with the typical criterion-blind modelling approach. We compiled data on biological traits (e.g. range size, clutch size) and external drivers (e.g. change in canopy cover) often associated with extinction risk. For each specific criterion, we modelled the relationship between extinction risk predictors and species' Red List category under that criterion using ordinal regression models. We found criterion-specific models were better at identifying threatened species compared to a criterion-blind model (higher sensitivity), but less good at identifying not threatened species (lower specificity). As expected, different covariates were important for predicting extinction risk under different criteria. Change in annual temperature was important for criteria related to population trends, while high forest dependency was important for criteria related to restricted area of occupancy or small population size. Our criteria-specific method can support Red List assessors by producing outputs that identify species likely to meet specific criteria, and which are the most important predictors. These species can then be prioritised for re-evaluation. We expect this new approach to increase the uptake of extinction risk models in Red List assessments, bridging a long-standing research-implementation gap.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Especies en Peligro de Extinción / Conservación de los Recursos Naturales Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Glob Chang Biol Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Especies en Peligro de Extinción / Conservación de los Recursos Naturales Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Glob Chang Biol Año: 2024 Tipo del documento: Article País de afiliación: Alemania