Your browser doesn't support javascript.
loading
Systematic analysis and expression of Gossypium ATG8 family reveals the roles of GhATG8f responding to salt stress in cotton.
Chen, Xiugui; He, Yunxin; Wu, Zhe; Lu, Xuke; Yin, Zujun; Zhao, Lanjie; Huang, Hui; Meng, Yuan; Fan, Yapeng; Guo, Lixue; Wang, Delong; Wang, Junjuan; Wang, Shuai; Chen, Chao; Wang, Xiupin; Ye, Wuwei.
Afiliación
  • Chen X; Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
  • He Y; Hunan Institute of Cotton Science, Changde, 415101, Hunan, China.
  • Wu Z; Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, Hebei, China.
  • Lu X; Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
  • Yin Z; Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
  • Zhao L; Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
  • Huang H; Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
  • Meng Y; Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
  • Fan Y; Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
  • Guo L; Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
  • Wang D; Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
  • Wang J; Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
  • Wang S; Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
  • Chen C; Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
  • Wang X; Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, Hebei, China. bhswxp@163.com.
  • Ye W; Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China. yew158@163.com.
Plant Cell Rep ; 43(2): 58, 2024 Feb 06.
Article en En | MEDLINE | ID: mdl-38321189
ABSTRACT
KEY MESSAGE Comprehensive analysis of Gossypium ATG8 family indicates that GhATG8f could improve salt tolerance of cotton by increasing SOD, POD and CAT activity and proline accumulation. In plants, autophagy is regulated by several genes that play important roles in initiating and controlling the process. ATG8, functioning as a protein similar to ubiquitin, is involved in crucial tasks throughout the autophagosome formation process. In this research, we conducted an extensive and all-encompassing investigation of 64 ATG8 genes across four varieties of cotton. According to the subcellular localization prediction results, 49 genes were found in the cytoplasm, 6 genes in the chloroplast, 1 gene in the peroxisome, 5 genes in the nucleus, and 3 genes in the extracellular region. Phylogenetic analysis categorized a total of 5 subfamilies containing sixty-four ATG8 genes. The expression of the majority of GhATG8 genes was induced by salt, drought, cold, and heat stresses, as revealed by RNA-seq and real-time PCR. Analysis of cis-elements in the promoters of GhATG8 genes revealed the predominant presence of responsive elements for plant hormones and abiotic stress, suggesting that GhATG8 genes might have significant functions in abiotic stress response. Furthermore, we additionally performed a gene interaction network analysis for the GhATG8 proteins. The salt stress resistance of cotton was reduced due to the downregulation of GhATG8f expression, resulting in decreased activity of CAT, SOD, and POD enzymes, as well as decreased fresh weight and proline accumulation. In summary, our research is the initial exploration of ATG8 gene components in cotton, providing a basis for future investigations into the regulatory mechanisms of ATG8 genes in autophagy and their response to abiotic stress.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estrés Fisiológico / Gossypium Idioma: En Revista: Plant Cell Rep Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estrés Fisiológico / Gossypium Idioma: En Revista: Plant Cell Rep Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China