Accelerated Nano-Optical Imaging through Sparse Sampling.
Nano Lett
; 24(7): 2149-2156, 2024 Feb 21.
Article
en En
| MEDLINE
| ID: mdl-38329715
ABSTRACT
The integration time and signal-to-noise ratio are inextricably linked when performing scanning probe microscopy based on raster scanning. This often yields a large lower bound on the measurement time, for example, in nano-optical imaging experiments performed using a scanning near-field optical microscope (SNOM). Here, we utilize sparse scanning augmented with Gaussian process regression to bypass the time constraint. We apply this approach to image charge-transfer polaritons in graphene residing on ruthenium trichloride (α-RuCl3) and obtain key features such as polariton damping and dispersion. Critically, nano-optical SNOM imaging data obtained via sparse sampling are in good agreement with those extracted from traditional raster scans but require 11 times fewer sampled points. As a result, Gaussian process-aided sparse spiral scans offer a major decrease in scanning time.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos