SST-editing: in silico spatial transcriptomic editing at single-cell resolution.
Bioinformatics
; 40(3)2024 03 04.
Article
en En
| MEDLINE
| ID: mdl-38341653
ABSTRACT
MOTIVATION Generative Adversarial Nets (GAN) achieve impressive performance for text-guided editing of natural images. However, a comparable utility of GAN remains understudied for spatial transcriptomics (ST) technologies with matched gene expression and biomedical image data. RESULTS:
We propose In Silico Spatial Transcriptomic editing that enables gene expression-guided editing of immunofluorescence images. Using cell-level spatial transcriptomics data extracted from normal and tumor tissue slides, we train the approach under the framework of GAN (Inversion). To simulate cellular state transitions, we then feed edited gene expression levels to trained models. Compared to normal cellular images (ground truth), we successfully model the transition from tumor to normal tissue samples, as measured with quantifiable and interpretable cellular features. AVAILABILITY AND IMPLEMENTATION https//github.com/CTPLab/SST-editing.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Transcriptoma
/
Neoplasias
Límite:
Humans
Idioma:
En
Revista:
Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
Suiza