Your browser doesn't support javascript.
loading
SST-editing: in silico spatial transcriptomic editing at single-cell resolution.
Wu, Jiqing; Koelzer, Viktor H.
Afiliación
  • Wu J; Department of Pathology and Molecular Pathology, Computational and Translational Pathology Laboratory (CTP), University Hospital of Zurich, University of Zurich, Zurich, Switzerland.
  • Koelzer VH; Department of Pathology and Molecular Pathology, Computational and Translational Pathology Laboratory (CTP), University Hospital of Zurich, University of Zurich, Zurich, Switzerland.
Bioinformatics ; 40(3)2024 03 04.
Article en En | MEDLINE | ID: mdl-38341653
ABSTRACT
MOTIVATION Generative Adversarial Nets (GAN) achieve impressive performance for text-guided editing of natural images. However, a comparable utility of GAN remains understudied for spatial transcriptomics (ST) technologies with matched gene expression and biomedical image data.

RESULTS:

We propose In Silico Spatial Transcriptomic editing that enables gene expression-guided editing of immunofluorescence images. Using cell-level spatial transcriptomics data extracted from normal and tumor tissue slides, we train the approach under the framework of GAN (Inversion). To simulate cellular state transitions, we then feed edited gene expression levels to trained models. Compared to normal cellular images (ground truth), we successfully model the transition from tumor to normal tissue samples, as measured with quantifiable and interpretable cellular features. AVAILABILITY AND IMPLEMENTATION https//github.com/CTPLab/SST-editing.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Transcriptoma / Neoplasias Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Transcriptoma / Neoplasias Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Suiza