Your browser doesn't support javascript.
loading
Kinetic trapping of nanoparticles by solvent-induced interactions.
Singletary, Troy; Drazer, German; Marschilok, Amy C; Takeuchi, Esther S; Takeuchi, Kenneth J; Colosqui, Carlos E.
Afiliación
  • Singletary T; Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA. carlos.colosqui@stonybrook.edu.
  • Drazer G; Mechanical and Aerospace Engineering Department, Rutgers University, NJ 08854, USA.
  • Marschilok AC; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA. kenneth.takeuchi.1@stonybrook.edu.
  • Takeuchi ES; Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
  • Takeuchi KJ; Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
  • Colosqui CE; The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA.
Nanoscale ; 16(10): 5374-5382, 2024 Mar 07.
Article en En | MEDLINE | ID: mdl-38375739
ABSTRACT
Theoretical analysis based on mean field theory indicates that solvent-induced interactions (i.e. structural forces due to the rearrangement of wetting solvent molecules) not considered in DLVO theory can induce the kinetic trapping of nanoparticles at finite nanoscale separations from a well-wetted surface, under a range of ubiquitous physicochemical conditions for inorganic nanoparticles of common materials (e.g., metal oxides) in water or simple molecular solvents. This work proposes a simple analytical model that is applicable to arbitrary materials and simple solvents to determine the conditions for direct particle-surface contact or kinetic trapping at finite separations, by using experimentally measurable properties (e.g., Hamaker constants, interfacial free energies, and nanoparticle size) as input parameters. Analytical predictions of the proposed model are verified by molecular dynamics simulations and numerical solution of the Smoluchowski diffusion equation.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos