Your browser doesn't support javascript.
loading
Constructing a Z-Scheme Co3O4/BiOBr Heterojunction to Enhance Photocatalytic Peroxydisulfate Oxidation of High-Concentration Rhodamine B: Mechanism, Degradation Pathways, and Toxicological Evaluations.
Zhang, Si-Qun; Xu, Huan-Yan; Li, Bo; Xu, Yan; Komarneni, Sridhar.
Afiliación
  • Zhang SQ; Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China.
  • Xu HY; Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China.
  • Li B; Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China.
  • Xu Y; Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China.
  • Komarneni S; Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Inorg Chem ; 63(9): 4447-4460, 2024 Mar 04.
Article en En | MEDLINE | ID: mdl-38385361
ABSTRACT
Photocatalytic coupling technologies have emerged as popular strategies to increase the treatment efficiency of dye-containing wastewater. Herein, the Z-scheme Co3O4/BiOBr heterojunction (Z-CBH) was constructed and developed as a photocatalytic peroxydisulfate (PDS) activator for the degradation of high-concentration Rhodamine B (RhB). Multiple testing techniques were employed to confirm the formation of Z-CBHs. When 0.1 g·L-1 of Z-CBH20 and 1.0 mmol·L-1 of PDS were added simultaneously under simulated sunlight irradiation, the RhB degradation efficiency could approach 91.3%. Its reaction rate constant (0.01231 min-1) was much beyond the sum of those in the Z-CBH20/light system (0.00436 min-1) and the PDS/light system (0.0062 min-1). h+, •OH, •O2-, SO4•-, and 1O2 were detected as the dominant reactive species for RhB degradation. The potential mechanism of photocatalytic PDS oxidation was proposed. The possible intermediates were determined by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry assisted with density functional theory and Fukui theory. The possible degradation pathways of RhB degradation were put forward. The toxicological properties of RhB and its intermediates were evaluated by quantitative structure-activity relationship prediction. This work will not only provide a reference for developing photocatalytic persulfate activators but also gain an insight into the degradation pathways of RhB and the toxicity of its intermediates.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2024 Tipo del documento: Article