Your browser doesn't support javascript.
loading
Impact of Glycosylation on Protein-Protein Self-Interactions of Monoclonal Antibodies.
Palakollu, Veerabhadraiah; Motabar, Lily; Roberts, Christopher J.
Afiliación
  • Palakollu V; Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.
  • Motabar L; Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.
  • Roberts CJ; Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.
Mol Pharm ; 21(3): 1414-1423, 2024 Mar 04.
Article en En | MEDLINE | ID: mdl-38386020
ABSTRACT
Protein self-interactions measured via second osmotic virial coefficients (B22) and dynamic light scattering interaction parameter values (kD) are often used as metrics for assessing the favorability of protein candidates and different formulations during monoclonal antibody (MAb) product development. Model predictions of B22 or kD typically do not account for glycans, though glycosylation can potentially impact experimental MAb self-interactions. To the best of our knowledge, the impact of MAb glycosylation on the experimentally measured B22 and kD values has not yet been reported. B22 and kD values of two fully deglycosylated MAbs and their native (i.e., fully glycosylated) counterparts were measured by light scattering over a range of pH and ionic strength conditions. Significant differences between B22 and kD of the native and deglycosylated forms were observed at a range of low to high ionic strengths used to modulate the effect of electrostatic contributions. Differences were most pronounced at low ionic strength, indicating that electrostatic interactions are a contributing factor. Though B22 and kD values were statistically equivalent at high ionic strengths where electrostatics were fully screened, we observed protein-dependent qualitative differences, which indicate that steric interactions may also play a role in the observed B22 and kD differences. A domain-level coarse-grained molecular model accounting for charge differences was considered to potentially provide additional insight but was not fully predictive of the behavior across all of the solution conditions investigated. This highlights that both the level of modeling and lack of inclusion of glycans may limit existing models in making quantitatively accurate predictions of self-interactions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polisacáridos / Anticuerpos Monoclonales Idioma: En Revista: Mol Pharm Asunto de la revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polisacáridos / Anticuerpos Monoclonales Idioma: En Revista: Mol Pharm Asunto de la revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos