Your browser doesn't support javascript.
loading
Contaminated soil remediation with nano-FeS loaded lignin hydrogel: A novel strategy to produce safe rice grains while reducing cadmium in paddy field.
Deng, Jianbin; Wang, Pu; Xu, Zhaoxin; Hu, Tian; Li, Deyun; Wei, Xiujiao; Chen, Chengyu; Li, Yongtao; Zhang, Yulong.
Afiliación
  • Deng J; Key Laboratory of Arable Land Conservation (South China), MOAE, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agri
  • Wang P; Key Laboratory of Arable Land Conservation (South China), MOAE, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agri
  • Xu Z; Key Laboratory of Arable Land Conservation (South China), MOAE, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agri
  • Hu T; Key Laboratory of Arable Land Conservation (South China), MOAE, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agri
  • Li D; School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
  • Wei X; Key Laboratory of Arable Land Conservation (South China), MOAE, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agri
  • Chen C; Key Laboratory of Arable Land Conservation (South China), MOAE, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agri
  • Li Y; Key Laboratory of Arable Land Conservation (South China), MOAE, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agri
  • Zhang Y; Key Laboratory of Arable Land Conservation (South China), MOAE, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agri
J Hazard Mater ; 469: 133965, 2024 May 05.
Article en En | MEDLINE | ID: mdl-38471381
ABSTRACT
Cadmium (Cd) contamination in agricultural soil has been an elevated concern due to the high health risks associated with the transfer through the soil-food chain, particularly in the case of rice. Recently, there has numerous researches on the use of nanoparticle-loaded materials for heavy metal-polluted soil remediation, resulting in favorable outcomes. However, there has been limited research focus on the field-scale application and recovery. This study was aimed to validate the Cd reduction effect of the nano-FeS loaded lignin hydrogel composites (FHC) in mildly polluted paddies, and to propose a field-scale application method. Hence, a multi-site field experiment was conducted in southern China. After the application for 94-103 days, the FHC exhibited a high integrity and elasticity, with a recovery rate of 91.90%. The single-round remediation led to decreases of 0.42-31.72% in soil Cd content and 1.52-49.11% in grain Cd content. Additionally, this remediation technique did not adversely impact rice production. Consequently, applying FHC in the field was demonstrated to be an innovative, efficient, and promising remediation technology. Simultaneously, a strategy was proposed for reducing Cd levels while cultivating rice in mildly polluted fields using the FHC.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oryza / Contaminantes del Suelo Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oryza / Contaminantes del Suelo Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article