Your browser doesn't support javascript.
loading
Nanofluidic memristor based on the elastic deformation of nanopores with nanoparticle adsorption.
Zhou, Xi; Zong, Yuanyuan; Wang, Yongchang; Sun, Miao; Shi, Deli; Wang, Wei; Du, Guanghua; Xie, Yanbo.
Afiliación
  • Zhou X; Department of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
  • Zong Y; School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
  • Wang Y; School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
  • Sun M; School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi'an 710072, China.
  • Shi D; School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
  • Wang W; School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
  • Du G; Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
  • Xie Y; School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
Natl Sci Rev ; 11(4): nwad216, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38487493
ABSTRACT
The memristor is the building block of neuromorphic computing. We report a new type of nanofluidic memristor based on the principle of elastic strain on polymer nanopores. With nanoparticles absorbed at the wall of a single conical polymer nanopore, we find a pinched hysteresis of the current within a scanning frequency range of 0.01-0.1 Hz, switching to a diode below 0.01 Hz and a resistor above 0.1 Hz. We attribute the current hysteresis to the elastic strain at the tip side of the nanopore, caused by electrical force on the particles adsorbed at the inner wall surface. Our simulation and analytical equations match well with experimental results, with a phase diagram for predicting the system transitions. We demonstrate the plasticity of our nanofluidic memristor to be similar to a biological synapse. Our findings pave a new way for ionic neuromorphic computing using nanofluidic memristors.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Natl Sci Rev Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Natl Sci Rev Año: 2024 Tipo del documento: Article País de afiliación: China