Your browser doesn't support javascript.
loading
In Vivo Intelligent Fluorescence Endo-Microscopy by Varifocal Meta-Device and Deep Learning.
Chia, Yu-Hsin; Liao, Wei-Hao; Vyas, Sunil; Chu, Cheng Hung; Yamaguchi, Takeshi; Liu, Xiaoyuan; Tanaka, Takuo; Huang, Yi-You; Chen, Mu Ku; Chen, Wen-Shiang; Tsai, Din Ping; Luo, Yuan.
Afiliación
  • Chia YH; Department of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan.
  • Liao WH; Institute of Medical Device and Imaging, National Taiwan University, Taipei, 10051, Taiwan.
  • Vyas S; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei, 10051, Taiwan.
  • Chu CH; Institute of Medical Device and Imaging, National Taiwan University, Taipei, 10051, Taiwan.
  • Yamaguchi T; YongLin Institute of Health, National Taiwan University, Taipei, 10087, Taiwan.
  • Liu X; Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan.
  • Tanaka T; Department of Electrical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China.
  • Huang YY; Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan.
  • Chen MK; Department of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan.
  • Chen WS; Institute of Medical Device and Imaging, National Taiwan University, Taipei, 10051, Taiwan.
  • Tsai DP; Department of Biomedical Engineering, National Taiwan University Hospital, Taipei, 10051, Taiwan.
  • Luo Y; Department of Electrical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China.
Adv Sci (Weinh) ; 11(20): e2307837, 2024 May.
Article en En | MEDLINE | ID: mdl-38488694
ABSTRACT
Endo-microscopy is crucial for real-time 3D visualization of internal tissues and subcellular structures. Conventional methods rely on axial movement of optical components for precise focus adjustment, limiting miniaturization and complicating procedures. Meta-device, composed of artificial nanostructures, is an emerging optical flat device that can freely manipulate the phase and amplitude of light. Here, an intelligent fluorescence endo-microscope is developed based on varifocal meta-lens and deep learning (DL). The breakthrough enables in vivo 3D imaging of mouse brains, where varifocal meta-lens focal length adjusts through relative rotation angle. The system offers key advantages such as invariant magnification, a large field-of-view, and optical sectioning at a maximum focal length tuning range of ≈2 mm with 3 µm lateral resolution. Using a DL network, image acquisition time and system complexity are significantly reduced, and in vivo high-resolution brain images of detailed vessels and surrounding perivascular space are clearly observed within 0.1 s (≈50 times faster). The approach will benefit various surgical procedures, such as gastrointestinal biopsies, neural imaging, brain surgery, etc.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Imagenología Tridimensional / Aprendizaje Profundo / Microscopía Fluorescente Límite: Animals Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Imagenología Tridimensional / Aprendizaje Profundo / Microscopía Fluorescente Límite: Animals Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article País de afiliación: Taiwán