Your browser doesn't support javascript.
loading
Graph-pMHC: graph neural network approach to MHC class II peptide presentation and antibody immunogenicity.
Thrift, William John; Perera, Jason; Cohen, Sivan; Lounsbury, Nicolas W; Gurung, Hem R; Rose, Christopher M; Chen, Jieming; Jhunjhunwala, Suchit; Liu, Kai.
Afiliación
  • Thrift WJ; Genentech, 1 DNA Way, South San Francisco, California 94080, USA.
  • Perera J; Genentech, 1 DNA Way, South San Francisco, California 94080, USA.
  • Cohen S; Genentech, 1 DNA Way, South San Francisco, California 94080, USA.
  • Lounsbury NW; Genentech, 1 DNA Way, South San Francisco, California 94080, USA.
  • Gurung HR; Genentech, 1 DNA Way, South San Francisco, California 94080, USA.
  • Rose CM; Genentech, 1 DNA Way, South San Francisco, California 94080, USA.
  • Chen J; Genentech, 1 DNA Way, South San Francisco, California 94080, USA.
  • Jhunjhunwala S; Genentech, 1 DNA Way, South San Francisco, California 94080, USA.
  • Liu K; Genentech, 1 DNA Way, South San Francisco, California 94080, USA.
Brief Bioinform ; 25(3)2024 Mar 27.
Article en En | MEDLINE | ID: mdl-38555476
ABSTRACT
Antigen presentation on MHC class II (pMHCII presentation) plays an essential role in the adaptive immune response to extracellular pathogens and cancerous cells. But it can also reduce the efficacy of large-molecule drugs by triggering an anti-drug response. Significant progress has been made in pMHCII presentation modeling due to the collection of large-scale pMHC mass spectrometry datasets (ligandomes) and advances in machine learning. Here, we develop graph-pMHC, a graph neural network approach to predict pMHCII presentation. We derive adjacency matrices for pMHCII using Alphafold2-multimer and address the peptide-MHC binding groove alignment problem with a simple graph enumeration strategy. We demonstrate that graph-pMHC dramatically outperforms methods with suboptimal inductive biases, such as the multilayer-perceptron-based NetMHCIIpan-4.0 (+20.17% absolute average precision). Finally, we create an antibody drug immunogenicity dataset from clinical trial data and develop a method for measuring anti-antibody immunogenicity risk using pMHCII presentation models. Our model increases receiver operating characteristic curve (ROC)-area under the ROC curve (AUC) by 2.57% compared to just filtering peptides by hits in OASis alone for predicting antibody drug immunogenicity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Antígenos de Histocompatibilidad Clase II Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Antígenos de Histocompatibilidad Clase II Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos