Your browser doesn't support javascript.
loading
BcABF1 Plays a Role in the Feedback Regulation of Abscisic Acid Signaling via the Direct Activation of BcPYL4 Expression in Pakchoi.
Yang, Xiaoxue; Wang, Meiyun; Zhou, Qian; Xu, Xinfeng; Li, Ying; Hou, Xilin; Xiao, Dong; Liu, Tongkun.
Afiliación
  • Yang X; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, M
  • Wang M; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, M
  • Zhou Q; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, M
  • Xu X; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, M
  • Li Y; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, M
  • Hou X; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, M
  • Xiao D; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, M
  • Liu T; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, M
Int J Mol Sci ; 25(7)2024 Mar 30.
Article en En | MEDLINE | ID: mdl-38612692
ABSTRACT
Abscisic acid-responsive element-binding factor 1 (ABF1), a key transcription factor in the ABA signal transduction process, regulates the expression of downstream ABA-responsive genes and is involved in modulating plant responses to abiotic stress and developmental processes. However, there is currently limited research on the feedback regulation of ABF1 in ABA signaling. This study delves into the function of BcABF1 in Pakchoi. We observed a marked increase in BcABF1 expression in leaves upon ABA induction. The overexpression of BcABF1 not only spurred Arabidopsis growth but also augmented the levels of endogenous IAA. Furthermore, BcABF1 overexpression in Arabidopsis significantly decreased leaf water loss and enhanced the expression of genes associated with drought tolerance in the ABA pathway. Intriguingly, we found that BcABF1 can directly activate BcPYL4 expression, a critical receptor in the ABA pathway. Similar to BcABF1, the overexpression of BcPYL4 in Arabidopsis also reduces leaf water loss and promotes the expression of drought and other ABA-responsive genes. Finally, our findings suggested a novel feedback regulation mechanism within the ABA signaling pathway, wherein BcABF1 positively amplifies the ABA signal by directly binding to and activating the BcPYL4 promoter.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arabidopsis / Ácido Abscísico Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arabidopsis / Ácido Abscísico Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article