Your browser doesn't support javascript.
loading
Evidence for vagal sensory neural involvement in influenza pathogenesis and disease.
Verzele, Nathalie A J; Chua, Brendon Y; Short, Kirsty R; Moe, Aung Aung Kywe; Edwards, Isaac N; Bielefeldt-Ohmann, Helle; Hulme, Katina D; Noye, Ellesandra C; Tong, Marcus Z W; Reading, Patrick C; Trewella, Matthew W; Mazzone, Stuart B; McGovern, Alice E.
Afiliación
  • Verzele NAJ; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia.
  • Chua BY; Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia.
  • Short KR; The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia.
  • Moe AAK; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia.
  • Edwards IN; Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia.
  • Bielefeldt-Ohmann H; Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia.
  • Hulme KD; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia.
  • Noye EC; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia.
  • Tong MZW; Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia.
  • Reading PC; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia.
  • Trewella MW; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia.
  • Mazzone SB; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia.
  • McGovern AE; The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia.
PLoS Pathog ; 20(4): e1011635, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38626267
ABSTRACT
Influenza A virus (IAV) is a common respiratory pathogen and a global cause of significant and often severe morbidity. Although inflammatory immune responses to IAV infections are well described, little is known about how neuroimmune processes contribute to IAV pathogenesis. In the present study, we employed surgical, genetic, and pharmacological approaches to manipulate pulmonary vagal sensory neuron innervation and activity in the lungs to explore potential crosstalk between pulmonary sensory neurons and immune processes. Intranasal inoculation of mice with H1N1 strains of IAV resulted in stereotypical antiviral lung inflammation and tissue pathology, changes in breathing, loss of body weight and other clinical signs of severe IAV disease. Unilateral cervical vagotomy and genetic ablation of pulmonary vagal sensory neurons had a moderate effect on the pulmonary inflammation induced by IAV infection, but significantly worsened clinical disease presentation. Inhibition of pulmonary vagal sensory neuron activity via inhalation of the charged sodium channel blocker, QX-314, resulted in a moderate decrease in lung pathology, but again this was accompanied by a paradoxical worsening of clinical signs. Notably, vagal sensory ganglia neuroinflammation was induced by IAV infection and this was significantly potentiated by QX-314 administration. This vagal ganglia hyperinflammation was characterized by alterations in IAV-induced host defense gene expression, increased neuropeptide gene and protein expression, and an increase in the number of inflammatory cells present within the ganglia. These data suggest that pulmonary vagal sensory neurons play a role in the regulation of the inflammatory process during IAV infection and suggest that vagal neuroinflammation may be an important contributor to IAV pathogenesis and clinical presentation. Targeting these pathways could offer therapeutic opportunities to treat IAV-induced morbidity and mortality.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Receptoras Sensoriales / Nervio Vago / Infecciones por Orthomyxoviridae / Subtipo H1N1 del Virus de la Influenza A Límite: Animals Idioma: En Revista: PLoS Pathog Año: 2024 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Receptoras Sensoriales / Nervio Vago / Infecciones por Orthomyxoviridae / Subtipo H1N1 del Virus de la Influenza A Límite: Animals Idioma: En Revista: PLoS Pathog Año: 2024 Tipo del documento: Article País de afiliación: Australia