Your browser doesn't support javascript.
loading
Selective Adsorbent Design with Multifunctional Surfaces: Innovating Solutions for Heterogeneous Catalysis in Water.
Wang, Yanbin; Liang, Junxi; Liu, Shimin; Wang, Qing; Zhang, Yujing; Tian, Yu; Ke, Zhengang; Su, Qiong; Pang, Shaofeng.
Afiliación
  • Wang Y; Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical En
  • Liang J; Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical En
  • Liu S; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P. R. China.
  • Wang Q; Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical En
  • Zhang Y; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
  • Tian Y; Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical En
  • Ke Z; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
  • Su Q; Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical En
  • Pang S; Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical En
Langmuir ; 40(17): 9265-9279, 2024 Apr 30.
Article en En | MEDLINE | ID: mdl-38636094
ABSTRACT
Heterogeneous catalytic systems with water as the solvent often have the disadvantage of cross-contamination, while concerns about the purification and workup of the aqueous phase after reactions are rare in the lab or industry. In this context, designing and developing the functional selective solid adsorbent and revealing the adsorption mechanism can provide a new strategy and guidelines for constructing supported heterogeneous catalysts to address these issues. Herein, we report the stable composite adsorbent (Fe/ATP@PPy magnetic Fe3O4/attapulgite with the polypyrrole shell) that features an integrated multifunctional surface, which can effectively tune the selective adsorption processes for Cu2+, Co2+, and Ni2+ ions and nitrobenzene via the cooperative chemisorption/physisorption in an aqueous system. The adsorption experiments showed that Fe/ATP@PPy displayed significantly higher adsorption selectivity for Ni2+ than Cu2+ and Co2+ ions, especially which exhibited an approximate 100.00% removal for both Ni2+ ions and nitrobenzene in the mixture system with a low concentration. Furthermore, combined tracking adsorption of Ni2+ ions and X-ray photoelectron spectroscopy characterization confirmed that the effective adsorption occurs via ion transfer coordination; the pathway was further validated at the molecular level through theoretical modeling. In addition, the selective adsorption mechanism was proposed based on the adsorption experiment, characterization, and the corresponding density functional theory calculation.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article