Your browser doesn't support javascript.
loading
Living Self-Assembly of Monodisperse Micron-Sized Polymer Vesicles.
Pan, Hui; Zhang, Changxu; Jiang, Wenfeng; Zhou, Yongfeng.
Afiliación
  • Pan H; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China.
  • Zhang C; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China.
  • Jiang W; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China.
  • Zhou Y; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China.
Angew Chem Int Ed Engl ; 63(27): e202404589, 2024 Jul 01.
Article en En | MEDLINE | ID: mdl-38654509
ABSTRACT
Artificial vesicles are recognized as powerful platforms for a large body of research across the disciplines of chemistry, physics and biology. Despite the great progress, control of the size distribution to make uniform vesicles remains fundamentally difficult due to the highly uncontrollable growth kinetics, especially for micron-sized vesicles. Here we report a template-free living self-assembly method to prepare monodisperse vesicles around 1 µm from an alternating copolymer. The polymer forms nanodisks (ca. 9 nm) in N,N-dimethylformamide (DMF), acting as seeds for subsequent growth. By adding water, the nanodisks gradually grow into larger circular bilayer nanosheets, which bend to crowns and continue to grow into uniform micron-sized vesicles. The first-order growth kinetics as well as the small size polydispersity index (<0.1) suggests the living self-assembly characteristics. This work paves a new way in both living self-assembly and monodisperse polymer vesicles.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article