Your browser doesn't support javascript.
loading
The influence of variations in ocular biometric and optical parameters on differences in refractive error.
Farzanfar, Arezoo; Lockett-Ruiz, Veronica; Navarro, Rafael; Koppen, Carina; Rozema, Jos J.
Afiliación
  • Farzanfar A; Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine and Health Sciences, Antwerp University, Wilrijk, Belgium.
  • Lockett-Ruiz V; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium.
  • Navarro R; INMA, Consejo Superior de Investigaciones Científicas & Universidad de Zaragoza, Zaragoza, Spain.
  • Koppen C; INMA, Consejo Superior de Investigaciones Científicas & Universidad de Zaragoza, Zaragoza, Spain.
  • Rozema JJ; Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine and Health Sciences, Antwerp University, Wilrijk, Belgium.
Ophthalmic Physiol Opt ; 44(5): 1000-1009, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38666416
ABSTRACT

PURPOSE:

To present a paraxial method to estimate the influence of variations in ocular biometry on changes in refractive error (S) at a population level and apply this method to literature data.

METHODS:

Error propagation was applied to two methods of eye modelling, referred to as the simple method and the matrix method. The simple method defines S as the difference between the axial power and the whole-eye power, while the matrix method uses more accurate ray transfer matrices. These methods were applied to literature data, containing the mean ocular biometry data from the SyntEyes model, as well as populations of premature infants with or without retinopathy, full-term infants, school children and healthy and diabetic adults.

RESULTS:

Applying these equations to 1000 SyntEyes showed that changes in axial length provided the most important contribution to the variations in refractive error (57%-64%), followed by lens power/gradient index power (16%-31%) and the anterior corneal radius of curvature (10%-13%). All other components of the eye contributed <4%. For young children, the largest contributions were made by variations in axial length, lens and corneal power for the simple method (67%, 23% and 8%, respectively) and by variations in axial length, gradient lens power and anterior corneal curvature for the matrix method (55%, 21% and 14%, respectively). During myopisation, the influence of variations in axial length increased from 54.5% to 73.4%, while changes in corneal power decreased from 9.82% to 6.32%. Similarly, for the other data sets, the largest contribution was related to axial length.

CONCLUSIONS:

This analysis confirms that the changes in ocular refraction were mostly associated with variations in axial length, lens and corneal power. The relative contributions of the latter two varied, depending on the particular population.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Refracción Ocular / Errores de Refracción / Biometría / Longitud Axial del Ojo Límite: Adolescent / Adult / Child / Child, preschool / Female / Humans / Infant / Male / Newborn Idioma: En Revista: Ophthalmic Physiol Opt Año: 2024 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Refracción Ocular / Errores de Refracción / Biometría / Longitud Axial del Ojo Límite: Adolescent / Adult / Child / Child, preschool / Female / Humans / Infant / Male / Newborn Idioma: En Revista: Ophthalmic Physiol Opt Año: 2024 Tipo del documento: Article País de afiliación: Bélgica