Your browser doesn't support javascript.
loading
Bio-Based Thiol-ene Network Thermosets from Isosorbide and Terpenes.
Prebihalo, Emily A; Johnson, Melody; Reineke, Theresa M.
Afiliación
  • Prebihalo EA; Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States.
  • Johnson M; Department of Chemistry and Biochemistry, North Dakota State University, 1231 Albrecht Blvd, Fargo, North Dakota 58102, United States.
  • Reineke TM; Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States.
ACS Macro Lett ; 13(5): 586-591, 2024 May 21.
Article en En | MEDLINE | ID: mdl-38666714
ABSTRACT
Thermoset networks are chemically cross-linked materials that exhibit high heat resistance and mechanical strength; however, the permanently cross-linked system makes end-of-life degradation difficult. Thermosets that are inherently degradable and made from renewably derived starting materials are an underexplored area in sustainable polymer chemistry. Here, we report the synthesis of novel sugar- and terpene-based monomers as the enes in thiol-ene network formation. The resulting networks showed varied mechanical properties depending on the thiol used during cross-linking, ranging from strain-at-breaks of 12 to 200%. Networks with carveol or an isosorbide-based thiol incorporated showed plastic deformation under tensile stress testing, while geraniol-containing networks demonstrated linear stress-strain behavior. The storage modulus at the rubbery plateau was highly dependent on the thiol cross-linker, showing an order of magnitude difference between commercial PETMP, DTT, and synthesized Iso2MC. Thermal degradation temperatures were low for the networks, primarily below 200 °C, and the Tg values ranged from -17 to 31 °C. Networks were rapidly degraded under basic conditions, showing complete degradation after 2 days for nearly all synthesized thermosets. This library demonstrates the range of thermal and mechanical properties that can be targeted using monomers from sugars and terpenes and expands the field of renewably derived and degradable thermoset network materials.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Macro Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Macro Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos