Your browser doesn't support javascript.
loading
Enhanced catalytic activity of Fe3O4-carbon dots complex in the Fenton reaction for enhanced immunotherapeutic and oxygenation effects.
Li, Guanghao; Bao, Yujun; Zhang, Hui; Wang, Jingchun; Wu, Xiaodan; Yan, Rui; Wang, Zhiqiang; Jin, Yingxue.
Afiliación
  • Li G; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
  • Bao Y; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of
  • Zhang H; Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; College of Public Health, Mudanjiang Medical University, Mudanjiang 157009, China.
  • Wang J; Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; College of Pharmacy, Qiqihaer Medical University, Qiqihaer 161006, China.
  • Wu X; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
  • Yan R; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China. Electronic addres
  • Wang Z; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China. Electronic addres
  • Jin Y; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of
J Colloid Interface Sci ; 668: 618-633, 2024 Aug 15.
Article en En | MEDLINE | ID: mdl-38696990
ABSTRACT
Tumor metastasis and recurrence are closely related to immune escape and hypoxia. Chemodynamic therapy (CDT), photodynamic therapy (PDT), and photothermal therapy (PTT) can induce immunogenic cell death (ICD), and their combination with immune checkpoint agents is a promising therapeutic strategy. Iron based nanomaterials have received more and more attention, but their low Fenton reaction efficiency has hindered their clinical application. In this study, Fe3O4-carbon dots complex (Fe3O4-CDs) was synthesized, which was modified with ferrocenedicarboxylic acid by amide bond, and crosslinked into Fe3O4-CDs@Fc nano complex. The CDs catalyzed the Fenton reaction activity of Fe3O4 by helping to improve the electron transfer efficiency, extended the reaction pH condition to 7.4. The Fe3O4-CDs@Fc exhibit exceptional optical activity, achieving a thermal conversion efficiency of 56.43 % under 808 nm light and a photosensitive single-line state oxygen quantum yield of 33 % under 660 nm light. Fe3O4-CDs@Fc improved intracellular oxygen level and inhibited hypoxia-inducing factor (HIF-1α) by in-situ oxygen production based on Fenton reaction. The multimodal combination of Fe3O4-CDs@Fc (CDT/PDT/PTT) strongly induced immune cell death (ICD). The expression of immune-related protein and HIF-1α was investigated by immunofluorescence method. In vivo, Fe3O4-CDs@Fc combined with immune checkpoint blocker (antibody PD-L1, αPD-L1) effectively ablated primary tumors and inhibited distal tumor growth. Fe3O4-CDs@Fc is a promising immune-antitumor drug.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxígeno / Carbono / Puntos Cuánticos Límite: Animals / Female / Humans Idioma: En Revista: J Colloid Interface Sci / J. colloid interface sci / Journal of colloid and interface science Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxígeno / Carbono / Puntos Cuánticos Límite: Animals / Female / Humans Idioma: En Revista: J Colloid Interface Sci / J. colloid interface sci / Journal of colloid and interface science Año: 2024 Tipo del documento: Article País de afiliación: China