Your browser doesn't support javascript.
loading
Electric-field tunable Type-I to Type-II band alignment transition in MoSe2/WS2 heterobilayers.
Kistner-Morris, Jed; Shi, Ao; Liu, Erfu; Arp, Trevor; Farahmand, Farima; Taniguchi, Takashi; Watanabe, Kenji; Aji, Vivek; Lui, Chun Hung; Gabor, Nathaniel.
Afiliación
  • Kistner-Morris J; Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA.
  • Shi A; Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA.
  • Liu E; Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA.
  • Arp T; National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
  • Farahmand F; Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA.
  • Taniguchi T; Department of Physics, University of California, Santa Barbara, CA, 93106, USA.
  • Watanabe K; Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA.
  • Aji V; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.
  • Lui CH; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.
  • Gabor N; Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA.
Nat Commun ; 15(1): 4075, 2024 May 14.
Article en En | MEDLINE | ID: mdl-38744965
ABSTRACT
Semiconductor heterojunctions are ubiquitous components of modern electronics. Their properties depend crucially on the band alignment at the interface, which may exhibit straddling gap (type-I), staggered gap (type-II) or broken gap (type-III). The distinct characteristics and applications associated with each alignment make it highly desirable to switch between them within a single material. Here we demonstrate an electrically tunable transition between type-I and type-II band alignments in MoSe2/WS2 heterobilayers by investigating their luminescence and photocurrent characteristics. In their intrinsic state, these heterobilayers exhibit a type-I band alignment, resulting in the dominant intralayer exciton luminescence from MoSe2. However, the application of a strong interlayer electric field induces a transition to a type-II band alignment, leading to pronounced interlayer exciton luminescence. Furthermore, the formation of the interlayer exciton state traps free carriers at the interface, leading to the suppression of interlayer photocurrent and highly nonlinear photocurrent-voltage characteristics. This breakthrough in electrical band alignment control, interlayer exciton manipulation, and carrier trapping heralds a new era of versatile optical and (opto)electronic devices composed of van der Waals heterostructures.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos