Your browser doesn't support javascript.
loading
Inverted device architecture for high efficiency single-layer organic light-emitting diodes with imbalanced charge transport.
Tan, Xiao; Dou, Dehai; Chua, Lay-Lay; Png, Rui-Qi; Congrave, Daniel G; Bronstein, Hugo; Baumgarten, Martin; Li, Yungui; Blom, Paul W M; Wetzelaer, Gert-Jan A H.
Afiliación
  • Tan X; Max Planck Institute for Polymer Research, Mainz, Germany.
  • Dou D; Max Planck Institute for Polymer Research, Mainz, Germany.
  • Chua LL; Department of Physics, National University of Singapore, Singapore, Singapore.
  • Png RQ; National University of Singapore, Department of Chemistry, Singapore, Singapore.
  • Congrave DG; Department of Physics, National University of Singapore, Singapore, Singapore.
  • Bronstein H; Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Baumgarten M; Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Li Y; Cavendish Laboratory, University of Cambridge, Cambridge, UK.
  • Blom PWM; Max Planck Institute for Polymer Research, Mainz, Germany.
  • Wetzelaer GAH; Max Planck Institute for Polymer Research, Mainz, Germany. yungui.li@mpip-mainz.mpg.de.
Nat Commun ; 15(1): 4107, 2024 May 15.
Article en En | MEDLINE | ID: mdl-38750042
ABSTRACT
Many wide-gap organic semiconductors exhibit imbalanced electron and hole transport, therefore efficient organic light-emitting diodes require a multilayer architecture of electron- and hole-transport materials to confine charge recombination to the emissive layer. Here, we show that even for emitters with imbalanced charge transport, it is possible to obtain highly efficient single-layer organic light emitting diodes (OLEDs), without the need for additional charge-transport and blocking layers. For hole-dominated emitters, an inverted single-layer device architecture with ohmic bottom-electron and top-hole contacts moves the emission zone away from the metal top electrode, thereby more than doubling the optical outcoupling efficiency. Finally, a blue-emitting inverted single-layer OLED based on thermally activated delayed fluorescence is achieved, exhibiting a high external quantum efficiency of 19% with little roll-off at high brightness, demonstrating that balanced charge transport is not a prerequisite for highly efficient single-layer OLEDs.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Alemania