Your browser doesn't support javascript.
loading
Mechanical behavior of full-thickness burn human skin is rate-independent.
Gallagher, Samara; Josyula, Kartik; Kruger, Uwe; Gong, Alex; Song, Agnes; Eschelbach, Emily; Crawford, David; Pham, Tam; Sweet, Robert; Parsey, Conner; Norfleet, Jack; De, Suvranu.
Afiliación
  • Gallagher S; Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
  • Josyula K; Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA.
  • Rahul; Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA.
  • Kruger U; Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA. rahul@rpi.edu.
  • Gong A; Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA.
  • Song A; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
  • Eschelbach E; Center for Research in Education and Simulation Technologies, University of Washington, Seattle, WA, USA.
  • Crawford D; Center for Research in Education and Simulation Technologies, University of Washington, Seattle, WA, USA.
  • Pham T; UW Medicine Regional Burn Center at Harborview Medical Center, University of Washington, Seattle, WA, USA.
  • Sweet R; UW Medicine Regional Burn Center at Harborview Medical Center, University of Washington, Seattle, WA, USA.
  • Parsey C; UW Medicine Regional Burn Center at Harborview Medical Center, University of Washington, Seattle, WA, USA.
  • Norfleet J; Center for Research in Education and Simulation Technologies, University of Washington, Seattle, WA, USA.
  • De S; U.S. Army Combat Capabilities Development Command - Soldier Center, Simulation and Training Technology Center, Orlando, FL, USA.
Sci Rep ; 14(1): 11096, 2024 05 15.
Article en En | MEDLINE | ID: mdl-38750077
ABSTRACT
Skin tissue is recognized to exhibit rate-dependent mechanical behavior under various loading conditions. Here, we report that the full-thickness burn human skin exhibits rate-independent behavior under uniaxial tensile loading conditions. Mechanical properties, namely, ultimate tensile stress, ultimate tensile strain, and toughness, and parameters of Veronda-Westmann hyperelastic material law were assessed via uniaxial tensile tests. Univariate hypothesis testing yielded no significant difference (p > 0.01) in the distributions of these properties for skin samples loaded at three different rates of 0.3 mm/s, 2 mm/s, and 8 mm/s. Multivariate multiclass classification, employing a logistic regression model, failed to effectively discriminate samples loaded at the aforementioned rates, with a classification accuracy of only 40%. The median values for ultimate tensile stress, ultimate tensile strain, and toughness are computed as 1.73 MPa, 1.69, and 1.38 MPa, respectively. The findings of this study hold considerable significance for the refinement of burn care training protocols and treatment planning, shedding new light on the unique, rate-independent behavior of burn skin.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Piel / Estrés Mecánico / Resistencia a la Tracción / Quemaduras Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Piel / Estrés Mecánico / Resistencia a la Tracción / Quemaduras Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos