Your browser doesn't support javascript.
loading
3D printing of ferromagnetic passive shims for field shaping in magnetic resonance imaging.
Vanduffel, Hanne; Goudard, Quentin; Vanduffel, An; Basov, Sergey; Van Bael, Margriet J; Parra-Cabrera, Cesar; Gsell, Willy; Oliveira-Silva, Rodrigo; Matavz, Aleksander; Vanduffel, Wim; Himmelreich, Uwe; Sakellariou, Dimitrios; Ameloot, Rob.
Afiliación
  • Vanduffel H; KU Leuven, Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Department of Microbial and Molecular Systems (M(2)S), Celestijnenlaan 200 F Box 2454, 3000 Leuven, Belgium.
  • Goudard Q; KU Leuven, Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Department of Microbial and Molecular Systems (M(2)S), Celestijnenlaan 200 F Box 2454, 3000 Leuven, Belgium.
  • Vanduffel A; KU Leuven, Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Department of Microbial and Molecular Systems (M(2)S), Celestijnenlaan 200 F Box 2454, 3000 Leuven, Belgium.
  • Basov S; KU Leuven, Quantum Solid State Physics (QSP), Department of Physics and Astronomy, Celestijnenlaan 200d, box 2414, 3000 Leuven, Belgium.
  • Van Bael MJ; KU Leuven, Quantum Solid State Physics (QSP), Department of Physics and Astronomy, Celestijnenlaan 200d, box 2414, 3000 Leuven, Belgium.
  • Parra-Cabrera C; KU Leuven, Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Department of Microbial and Molecular Systems (M(2)S), Celestijnenlaan 200 F Box 2454, 3000 Leuven, Belgium.
  • Gsell W; KU Leuven, Biomedical MRI, Department of Imaging and Pathology, RK-Herestraat 49 box 505, 3000 Leuven, Belgium.
  • Oliveira-Silva R; KU Leuven, Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Department of Microbial and Molecular Systems (M(2)S), Celestijnenlaan 200 F Box 2454, 3000 Leuven, Belgium.
  • Matavz A; KU Leuven, Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Department of Microbial and Molecular Systems (M(2)S), Celestijnenlaan 200 F Box 2454, 3000 Leuven, Belgium.
  • Vanduffel W; KU Leuven, Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, ON2 Herestraat 49 box 1021, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, U
  • Himmelreich U; KU Leuven, Biomedical MRI, Department of Imaging and Pathology, RK-Herestraat 49 box 505, 3000 Leuven, Belgium.
  • Sakellariou D; KU Leuven, Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Department of Microbial and Molecular Systems (M(2)S), Celestijnenlaan 200 F Box 2454, 3000 Leuven, Belgium. Electronic address: Dimitrios.sakellariou@kuleuven.be.
  • Ameloot R; KU Leuven, Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Department of Microbial and Molecular Systems (M(2)S), Celestijnenlaan 200 F Box 2454, 3000 Leuven, Belgium. Electronic address: rob.ameloot@kuleuven.be.
J Magn Reson ; 363: 107702, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38788358
ABSTRACT
Magnetic Resonance Imaging (MRI) often encounters image quality degradation due to magnetic field inhomogeneities. Conventional passive shimming techniques involve the manual placement of discrete magnetic materials, imposing limitations on correcting complex inhomogeneities. To overcome this, we propose a novel 3D printing method utilizing binder jetting technology to enable precise deposition of a continuous range of concentrations of ferromagnetic ink. This approach grants complete control of the magnitude of the magnetic moment within the passive shim enabling tailored corrections of B0 field inhomogeneities. By optimizing the magnetic field distribution using linear programming and an in-house written Computer-Aided Design (CAD) generation software, we printed shims with promising results in generating low spherical harmonic corrections. Experimental evaluations demonstrate feasibility of these 3D printed passive shims to induce target magnetic fields corresponding to second-order spherical harmonic, as evidenced by acquired B0 maps. The electrically insulating properties of the printed shims eliminate the risk of eddy currents and heating, thus ensuring safety. The dimensional fabrication accuracy of the printed shims surpasses previous methods, enabling more precise and localized correction of subject-specific inhomogeneities. The findings highlight the potential of binder-jetted 3D printed passive shims in MRI shimming as a versatile and efficient solution for fabricating passive shims, with the potential to enhance the quality of MRI imaging while also being applicable to other types of Magnetic Resonance systems.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Magn Reson Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Magn Reson Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: Bélgica