Your browser doesn't support javascript.
loading
Impact of surrounding tissue-type and peri-electrode gap in stereoelectroencephalography guided (SEEG) radiofrequency thermocoagulation (RF-TC): a computational study.
Collavini, Santiago; Pérez, Juan J; Berjano, Enrique; Fernández-Corazza, Mariano; Oddo, Silvia; Irastorza, Ramiro M.
Afiliación
  • Collavini S; Institute of Engineering and Agronomy, National University Arturo Jauretche, Buenos Aires, Argentina.
  • Pérez JJ; Neurosciences and Complex Systems Unit (EnyS), CONICET, Hosp. "El Cruce N. Kirchner", National University A. Jauretche (UNAJ), Buenos Aires, Argentina.
  • Berjano E; BioMIT, Departamento de Ingeniería Electrónica, Universitat Politècnica de València, València, Spain.
  • Fernández-Corazza M; BioMIT, Departamento de Ingeniería Electrónica, Universitat Politècnica de València, València, Spain.
  • Oddo S; Research Institute of Electronics, Control and Signal Processing (LEICI), National University of La Plata-CONICET, La Plata, Argentina.
  • Irastorza RM; Neurosciences and Complex Systems Unit (EnyS), CONICET, Hosp. "El Cruce N. Kirchner", National University A. Jauretche (UNAJ), Buenos Aires, Argentina.
Int J Hyperthermia ; 41(1): 2364721, 2024.
Article en En | MEDLINE | ID: mdl-38880496
ABSTRACT

PURPOSE:

To use computational modeling to provide a complete and logical description of the electrical and thermal behavior during stereoelectroencephalography-guided (SEEG) radiofrequency thermo-coagulation (RF-TC).

METHODS:

A coupled electrical-thermal model was used to obtain the temperature distributions in the tissue during RF-TC. The computer model was first validated by an ex vivo model based on liver fragments and later used to study the impact of three different factors on the coagulation zone size 1) the difference in the tissue surrounding the electrode (gray/white matter), 2) the presence of a peri-electrode gap occupied by cerebrospinal fluid (CSF), and 3) the energy setting used (power-duration).

RESULTS:

The model built for the experimental validation was able to predict both the evolution of impedance and the short diameter of the coagulation zone (error < 0.01 mm) reasonably well but overestimated the long diameter by 2 - 3 mm. After adapting the model to clinical conditions, the simulation showed that 1) Impedance roll-off limited the coagulation size but involved overheating (around 100 °C); 2) The type of tissue around the contacts (gray vs. white matter) had a moderate impact on the coagulation size (maximum difference 0.84 mm), and 3) the peri-electrode gap considerably altered the temperature distributions, avoided overheating, although the diameter of the coagulation zone was not very different from the no-gap case (<0.2 mm).

CONCLUSIONS:

This study showed that computer modeling, especially subject- and scenario-specific modeling, can be used to estimate in advance the electrical and thermal performance of the RF-TC in brain tissue.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Electrocoagulación / Electroencefalografía Límite: Humans Idioma: En Revista: Int J Hyperthermia Asunto de la revista: NEOPLASIAS / TERAPEUTICA Año: 2024 Tipo del documento: Article País de afiliación: Argentina

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Electrocoagulación / Electroencefalografía Límite: Humans Idioma: En Revista: Int J Hyperthermia Asunto de la revista: NEOPLASIAS / TERAPEUTICA Año: 2024 Tipo del documento: Article País de afiliación: Argentina