Your browser doesn't support javascript.
loading
The Force-Frequency Characteristics of Quartz Wafers under a Cantilever Beam Structure.
Shen, Junquan; Chen, Chin-Yin; Wu, Cheng-Yi; Cheng, Jiguang; Chao, Min-Chiang; Zhou, Qiang; Lu, Congda.
Afiliación
  • Shen J; College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
  • Chen CY; Zhejiang Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Materials Technology and Engineer, Chinese Academy of Sciences, Ningbo 315201, China.
  • Wu CY; Zhejiang Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Materials Technology and Engineer, Chinese Academy of Sciences, Ningbo 315201, China.
  • Cheng J; TXC (Ningbo) Corporation, Ningbo 315800, China.
  • Chao MC; TXC (Ningbo) Corporation, Ningbo 315800, China.
  • Zhou Q; TXC (Ningbo) Corporation, Ningbo 315800, China.
  • Lu C; TXC (Ningbo) Corporation, Ningbo 315800, China.
Sensors (Basel) ; 24(11)2024 May 24.
Article en En | MEDLINE | ID: mdl-38894150
ABSTRACT
This study investigated the force-frequency characteristics of quartz wafers inside a cantilever beam frame. Firstly, the force-frequency coefficient formula of quartz wafers with fixed ends under axial force was analyzed. Firstly, the formula for the force-frequency coefficient of quartz wafers with fixed ends under axial force was analyzed. A force-frequency coefficient formula suitable for cantilever beam structures was derived by considering the changes in surface stress and stiffness of quartz wafers with fixed ends and one end under force on the other. Subsequently, the formula's accuracy was verified by experiments, and the accuracy was more than 92%. In addition, strain simulation analysis was performed on three different shapes of quartz wafers, and experimental verification was carried out on two of them. The results revealed that trapezoidal quartz wafers and cantilever beam structures exhibited superior stress distribution to rectangular chips. Furthermore, by positioning electrodes at various locations on the surface of the quartz chip, it was observed that, as the electrodes moved closer to the fixed end, the force-frequency coefficient of the rectangular quartz chip increased, along with an increase in chip strain under the cantilever structure. In summary, this study provides a new approach for designing cantilever quartz resonator sensors in the future.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China