Your browser doesn't support javascript.
loading
Self-assembled skin-like metamaterials for dual-band camouflage.
Fang, Shiqi; Xu, Ning; Zhou, Lin; Wei, Tianqi; Yang, Yuhan; Liu, Yongmin; Zhu, Jia.
Afiliación
  • Fang S; National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, N
  • Xu N; National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, N
  • Zhou L; National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, N
  • Wei T; National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, N
  • Yang Y; National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, N
  • Liu Y; Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
  • Zhu J; National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, N
Sci Adv ; 10(25): eadl1896, 2024 Jun 21.
Article en En | MEDLINE | ID: mdl-38896621
ABSTRACT
Skin-like soft optical metamaterials with broadband modulation have been long pursued for practical applications, such as cloaking and camouflage. Here, we propose a skin-like metamaterial for dual-band camouflage based on unique Au nanoparticles assembled hollow pillars (NPAHP), which are implemented by the bottom-up template-assisted self-assembly processes. This dual-band camouflage realizes simultaneously high visible absorptivity (~0.947) and low infrared emissivity (~0.074/0.045 for mid-/long-wavelength infrared bands), ideal for visible and infrared dual-band camouflage at night or in outer space. In addition, this self-assembled metamaterial, with a micrometer thickness and periodic through-holes, demonstrates superior skin-like attachability and permeability, allowing close attachment to a wide range of surfaces including the human body. Last but not least, benefiting from the extremely low infrared emissivity, the skin-like metamaterial exhibits excellent high-temperature camouflage performance, with radiation temperature reduction from 678 to 353 kelvin. This work provides a new paradigm for skin-like metamaterials with flexible multiband modulation for multiple application scenarios.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2024 Tipo del documento: Article