Your browser doesn't support javascript.
loading
Sustainable H2O2 production in a floating dual-cathode electro-Fenton system for efficient decontamination of organic pollutants.
Wang, Zhicheng; Wang, Chen; Wu, Xiaohui; Oh, Wen-Da; Huang, Mingjie; Zhou, Tao.
Afiliación
  • Wang Z; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wu
  • Wang C; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wu
  • Wu X; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wu
  • Oh WD; School of Chemical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia.
  • Huang M; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wu
  • Zhou T; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wu
Chemosphere ; 362: 142635, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38897323
ABSTRACT
Electrochemical advanced oxidation processes (EAOPs) based on natural air diffusion electrode (NADE) promise efficient and affordable advanced oxidation water purification, but the sustainable operation of such reaction systems remains challenging due to severe cathode electrowetting. Herein, a novel floating cathode (FC) composed of a stable hydrophobic three-phase interface was established by designing a flexible catalytic layer of FC. This innovative electrode configuration could effectively prolong the service life of the cathode by mitigating the interference of H2 bubbles from the hydrogen evolution reaction (HER), and the H2O2 production rate reached 37.59 mg h-1·cm-2 and realize a long-term stable operation for 10 h. Additionally, an FC/carbon felt (CF) dual-cathode electro-Fenton system was constructed for in situ sulfamethoxazole (SMX) degradation. Efficient H2O2 production on FC and Fe(III) reduction on CF were synchronously achieved, attaining excellent degradation efficiency for both SMX (ca. 100%) with 2.5 mg L-1 of Fe(Ⅱ) injection. For real wastewater, the COD removal of the FC/CF dual-cathode electro-Fenton system was stabilized at exceeding 75%. The practical application potential of the FC/CF dual-cathode electro-Fenton system was also demonstrated for the treatment of actual landfill leachate in continuous flow mode. This work provides a valuable path for constructing a sustainable dual-cathode electro-Fenton system for actual wastewater treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxidación-Reducción / Contaminantes Químicos del Agua / Electrodos / Aguas Residuales / Peróxido de Hidrógeno / Hierro Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oxidación-Reducción / Contaminantes Químicos del Agua / Electrodos / Aguas Residuales / Peróxido de Hidrógeno / Hierro Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article