Your browser doesn't support javascript.
loading
Predictors of High Healthcare Cost Among Patients with Generalized Myasthenia Gravis: A Combined Machine Learning and Regression Approach from a US Payer Perspective.
Zhdanava, Maryia; Pesa, Jacqueline; Boonmak, Porpong; Schwartzbein, Samuel; Cai, Qian; Pilon, Dominic; Choudhry, Zia; Lafeuille, Marie-Hélène; Lefebvre, Patrick; Souayah, Nizar.
Afiliación
  • Zhdanava M; Analysis Group, Inc., Montréal, QC, Canada. Masha.Zhdanava@analysisgroup.com.
  • Pesa J; Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Titusville, NJ, USA.
  • Boonmak P; Analysis Group, Inc., Montréal, QC, Canada.
  • Schwartzbein S; Analysis Group, Inc., Montréal, QC, Canada.
  • Cai Q; Janssen Global Services, Titusville, NJ, USA.
  • Pilon D; Analysis Group, Inc., Montréal, QC, Canada.
  • Choudhry Z; Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Titusville, NJ, USA.
  • Lafeuille MH; Analysis Group, Inc., Montréal, QC, Canada.
  • Lefebvre P; Analysis Group, Inc., Montréal, QC, Canada.
  • Souayah N; Department of Neurology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, USA.
Appl Health Econ Health Policy ; 22(5): 735-747, 2024 Sep.
Article en En | MEDLINE | ID: mdl-39002043
ABSTRACT

BACKGROUND:

High healthcare costs could arise from unmet needs. This study used random forest (RF) and regression methods to identify predictors of high costs from a US payer perspective in patients newly diagnosed with generalized myasthenia gravis (gMG).

METHODS:

Adults with gMG (first diagnosis = index) were selected from the IQVIA PharMetrics® Plus database (2017-2021). Predictors of high healthcare costs were measured 12 months pre-index (main cohort) and during both the 12 months pre- and post-index (subgroup). Top 50 predictors of high costs [≥ $9404 (main cohort) and ≥ $9159 (subgroup) per-patient-per-month] were identified with RF models; the magnitude and direction of association were estimated with multivariable modified Poisson regression models.

RESULTS:

The main cohort and subgroup included 2739 and 1638 patients, respectively. In RF analysis, the most important predictors of high costs before/on the index date were index MG exacerbation, all-cause inpatient admission, and number of days with corticosteroids. After the index date, these were immunoglobulin and monoclonal antibody use and number of all-cause outpatient visits and MG-related encounters. Adjusting for the top 50 predictors, post-index immunoglobulin use increased the risk of high costs by 261%, monoclonal antibody use by 135%, index MG exacerbation by 78%, and pre-index all-cause inpatient admission by 27% (all p < 0.05).

CONCLUSIONS:

This analysis links patient characteristics both before the formal MG diagnosis and in the first year to high future healthcare costs. Findings may help inform payers on cost-saving strategies, and providers can potentially shift to targeted treatment approaches to reduce the clinical and economic burden of gMG.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Costos de la Atención en Salud / Aprendizaje Automático / Miastenia Gravis Límite: Adult / Aged / Female / Humans / Male / Middle aged País/Región como asunto: America do norte Idioma: En Revista: Appl Health Econ Health Policy Asunto de la revista: SAUDE PUBLICA / SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Costos de la Atención en Salud / Aprendizaje Automático / Miastenia Gravis Límite: Adult / Aged / Female / Humans / Male / Middle aged País/Región como asunto: America do norte Idioma: En Revista: Appl Health Econ Health Policy Asunto de la revista: SAUDE PUBLICA / SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: Canadá