Your browser doesn't support javascript.
loading
Conductivity-Regulated Bipolar Electrochemiluminescence Sensing Platform for Indicator-Free Homogeneous Bioassay.
Ni, Jiancong; Yang, Bifang; Liu, Liyang; Dai, Xiaohui; Yang, Weiqiang; Wang, Qingxiang; Chen, Xiaoping; Song, Zhiping; Lin, Zhenyu.
Afiliación
  • Ni J; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
  • Yang B; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
  • Liu L; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
  • Dai X; Zhangzhou Product Quality Inspection Institute, Zhangzhou 363000, Fujian, China.
  • Yang W; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
  • Wang Q; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
  • Chen X; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
  • Song Z; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
  • Lin Z; MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
Anal Chem ; 2024 Jul 17.
Article en En | MEDLINE | ID: mdl-39016591
ABSTRACT
Electrochemiluminescence (ECL) sensors have been widely developed because of their high sensitivity and low background. However, most of them suffered from tedious probe modification on the electrode and cross-interferences within the sensing and reporting reactions. The bipolar electrode based ECL (BPE-ECL) can effectively eliminate interference by physically separating the sensing and reporting cells, but there is still a need for exogenous electroactive indicators to transduce the variations between two poles of a BPE. Herein, based on the discovery that conductivity can be regulated in aqueous medium by homogeneous bioreaction, we showed a novel BPE-ECL sensing platform that combined the conductivity-based biosensing technology with ECL reporting system for the first time. Compared to many short nucleic acids, the target induced a hybridization chain reaction to produce the long nucleic acid aggregates, resulting in a conductivity decrease of the sensing cell and finally reducing the ECL response in the reporting cell. The BPE-ECL platform has already been applied to detect microRNA-21 for a demonstration. This innovative system not only separates the target sensing and reporting reactions but also avoids the use of electrochemical indicators for measurement. The BPE-ECL biosensing platform can be developed to detect different targets by changing the probe used.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2024 Tipo del documento: Article País de afiliación: China