BEROLECMI: a novel prediction method to infer circRNA-miRNA interaction from the role definition of molecular attributes and biological networks.
BMC Bioinformatics
; 25(1): 264, 2024 Aug 10.
Article
en En
| MEDLINE
| ID: mdl-39127625
ABSTRACT
Circular RNA (CircRNA)-microRNA (miRNA) interaction (CMI) is an important model for the regulation of biological processes by non-coding RNA (ncRNA), which provides a new perspective for the study of human complex diseases. However, the existing CMI prediction models mainly rely on the nearest neighbor structure in the biological network, ignoring the molecular network topology, so it is difficult to improve the prediction performance. In this paper, we proposed a new CMI prediction method, BEROLECMI, which uses molecular sequence attributes, molecular self-similarity, and biological network topology to define the specific role feature representation for molecules to infer the new CMI. BEROLECMI effectively makes up for the lack of network topology in the CMI prediction model and achieves the highest prediction performance in three commonly used data sets. In the case study, 14 of the 15 pairs of unknown CMIs were correctly predicted.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Biología Computacional
/
MicroARNs
/
ARN Circular
Límite:
Humans
Idioma:
En
Revista:
BMC Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
China