Your browser doesn't support javascript.
loading
HPC-T-Annotator: an HPC tool for de novo transcriptome assembly annotation.
Arcioni, Lorenzo; Arcieri, Manuel; Martino, Jessica Di; Liberati, Franco; Bottoni, Paolo; Castrignanò, Tiziana.
Afiliación
  • Arcioni L; Department of Computer Science, Sapienza University of Rome, Viale Regina Elena 295, 00166, Rome, Italy.
  • Arcieri M; Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 101, 2800, Kongens Lyngby, Denmark.
  • Martino JD; Department of Ecological and Biological Sciences, University of Tuscia, Viale dell'Università s.n.c., 01100, Viterbo, Italy.
  • Liberati F; Department of Computer Science, Sapienza University of Rome, Viale Regina Elena 295, 00166, Rome, Italy.
  • Bottoni P; Department of Ecological and Biological Sciences, University of Tuscia, Viale dell'Università s.n.c., 01100, Viterbo, Italy.
  • Castrignanò T; Department of Computer Science, Sapienza University of Rome, Viale Regina Elena 295, 00166, Rome, Italy. bottoni@di.uniroma1.it.
BMC Bioinformatics ; 25(1): 272, 2024 Aug 21.
Article en En | MEDLINE | ID: mdl-39169276
ABSTRACT

BACKGROUND:

The availability of transcriptomic data for species without a reference genome enables the construction of de novo transcriptome assemblies as alternative reference resources from RNA-Seq data. A transcriptome provides direct information about a species' protein-coding genes under specific experimental conditions. The de novo assembly process produces a unigenes file in FASTA format, subsequently targeted for the annotation. Homology-based annotation, a method to infer the function of sequences by estimating similarity with other sequences in a reference database, is a computationally demanding procedure.

RESULTS:

To mitigate the computational burden, we introduce HPC-T-Annotator, a tool for de novo transcriptome homology annotation on high performance computing (HPC) infrastructures, designed for straightforward configuration via a Web interface. Once the configuration data are given, the entire parallel computing software for annotation is automatically generated and can be launched on a supercomputer using a simple command line. The output data can then be easily viewed using post-processing utilities in the form of Python notebooks integrated in the proposed software.

CONCLUSIONS:

HPC-T-Annotator expedites homology-based annotation in de novo transcriptome assemblies. Its efficient parallelization strategy on HPC infrastructures significantly reduces computational load and execution times, enabling large-scale transcriptome analysis and comparison projects, while its intuitive graphical interface extends accessibility to users without IT skills.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Anotación de Secuencia Molecular / Transcriptoma Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Anotación de Secuencia Molecular / Transcriptoma Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Italia